Rendering-Aware Reinforcement Learning for Vector Graphics Generation
- URL: http://arxiv.org/abs/2505.20793v1
- Date: Tue, 27 May 2025 06:56:00 GMT
- Title: Rendering-Aware Reinforcement Learning for Vector Graphics Generation
- Authors: Juan A. Rodriguez, Haotian Zhang, Abhay Puri, Aarash Feizi, Rishav Pramanik, Pascal Wichmann, Arnab Mondal, Mohammad Reza Samsami, Rabiul Awal, Perouz Taslakian, Spandana Gella, Sai Rajeswar, David Vazquez, Christopher Pal, Marco Pedersoli,
- Abstract summary: We introduce RLRF(Reinforcement Learning from Rendering Feedback), an RL method that enhances SVG generation in vision-language models (VLMs)<n>Given an input image, the model generates SVG roll-outs that are rendered and compared to the original image to compute a reward.<n>This visual fidelity feedback guides the model toward producing more accurate, efficient, and semantically coherent SVGs.
- Score: 15.547843461605746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scalable Vector Graphics (SVG) offer a powerful format for representing visual designs as interpretable code. Recent advances in vision-language models (VLMs) have enabled high-quality SVG generation by framing the problem as a code generation task and leveraging large-scale pretraining. VLMs are particularly suitable for this task as they capture both global semantics and fine-grained visual patterns, while transferring knowledge across vision, natural language, and code domains. However, existing VLM approaches often struggle to produce faithful and efficient SVGs because they never observe the rendered images during training. Although differentiable rendering for autoregressive SVG code generation remains unavailable, rendered outputs can still be compared to original inputs, enabling evaluative feedback suitable for reinforcement learning (RL). We introduce RLRF(Reinforcement Learning from Rendering Feedback), an RL method that enhances SVG generation in autoregressive VLMs by leveraging feedback from rendered SVG outputs. Given an input image, the model generates SVG roll-outs that are rendered and compared to the original image to compute a reward. This visual fidelity feedback guides the model toward producing more accurate, efficient, and semantically coherent SVGs. RLRF significantly outperforms supervised fine-tuning, addressing common failure modes and enabling precise, high-quality SVG generation with strong structural understanding and generalization.
Related papers
- Reason-SVG: Hybrid Reward RL for Aha-Moments in Vector Graphics Generation [29.418375886989992]
We introduce Reason-SVG, a framework designed to enhance Large Language Models (LLMs) reasoning for SVG generation.<n>Reason-SVG pioneers the "Drawing-with-Thought" (DwT) paradigm, in which models generate both SVG code and explicit design rationales.<n>We introduce the SVGX-DwT-10k dataset, a high-quality corpus of 10,000 SVG-DwT pairs, where each SVG code is generated based on explicit DwT reasoning.
arXiv Detail & Related papers (2025-05-30T11:57:58Z) - OmniSVG: A Unified Scalable Vector Graphics Generation Model [69.59073636922287]
We propose OmniSVG, a unified framework that leverages pre-trained Vision-Language Models for end-to-end multimodal SVG generation.<n>By parameterizing SVG commands and coordinates into discrete tokens, OmniSVG decouples structural logic from low-level geometry for efficient training while maintaining the synthesis of complex SVG structure.<n>We introduce MMSVG-2M, a multimodal dataset with two million annotated SVG assets, along with a standardized evaluation protocol for conditional SVG generation tasks.
arXiv Detail & Related papers (2025-04-08T17:59:49Z) - NeuralSVG: An Implicit Representation for Text-to-Vector Generation [54.4153300455889]
We propose NeuralSVG, an implicit neural representation for generating vector graphics from text prompts.<n>To encourage a layered structure in the generated SVG, we introduce a dropout-based regularization technique.<n>We demonstrate that NeuralSVG outperforms existing methods in generating structured and flexible SVG.
arXiv Detail & Related papers (2025-01-07T18:50:06Z) - SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis [66.44553285020066]
SuperSVG is a superpixel-based vectorization model that achieves fast and high-precision image vectorization.
We propose a two-stage self-training framework, where a coarse-stage model is employed to reconstruct the main structure and a refinement-stage model is used for enriching the details.
Experiments demonstrate the superior performance of our method in terms of reconstruction accuracy and inference time compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-06-14T07:43:23Z) - Visually Descriptive Language Model for Vector Graphics Reasoning [76.42082386029206]
We propose the Visually Descriptive Language Model (VDLM) to bridge the gap between low-level visual perception and high-level language reasoning.
We show that VDLM significantly improves state-of-the-art LMMs like GPT-4o on various multimodal perception and reasoning tasks.
arXiv Detail & Related papers (2024-04-09T17:30:18Z) - SVGDreamer: Text Guided SVG Generation with Diffusion Model [31.76771064173087]
We propose a novel text-guided vector graphics synthesis method called SVGDreamer.<n>SIVE process enables decomposition of synthesis into foreground objects and background.<n>VPSD approach addresses issues of shape over-smoothing, color over-saturation, limited diversity, and slow convergence.
arXiv Detail & Related papers (2023-12-27T08:50:01Z) - Beyond Pixels: Exploring Human-Readable SVG Generation for Simple Images
with Vision Language Models [19.145503353922038]
We introduce our method, Simple-SVG-Generation (Stextsuperscript2VGtextsuperscript2).
Our method focuses on producing SVGs that are both accurate and simple, aligning with human readability and understanding.
With simple images, we evaluate our method with reasoning tasks together with advanced language models, the results show a clear improvement over previous SVG generation methods.
arXiv Detail & Related papers (2023-11-27T05:20:11Z) - Towards Layer-wise Image Vectorization [57.26058135389497]
We propose Layerwise Image Vectorization, namely LIVE, to convert images to SVGs and simultaneously maintain its image topology.
Live generates compact forms with layer-wise structures that are semantically consistent with human perspective.
Live initiates human editable SVGs for both designers and can be used in other applications.
arXiv Detail & Related papers (2022-06-09T17:55:02Z) - SVG-Net: An SVG-based Trajectory Prediction Model [67.68864911674308]
Anticipating motions of vehicles in a scene is an essential problem for safe autonomous driving systems.
To this end, the comprehension of the scene's infrastructure is often the main clue for predicting future trajectories.
Most of the proposed approaches represent the scene with averse averseized format and some of the more recent approaches leverage custom vectorized formats.
arXiv Detail & Related papers (2021-10-07T18:00:08Z) - DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation [217.86315551526235]
We propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and manipulation.
Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself.
We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool.
arXiv Detail & Related papers (2020-07-22T09:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.