Concealment of Intent: A Game-Theoretic Analysis
- URL: http://arxiv.org/abs/2505.20841v1
- Date: Tue, 27 May 2025 07:59:56 GMT
- Title: Concealment of Intent: A Game-Theoretic Analysis
- Authors: Xinbo Wu, Abhishek Umrawal, Lav R. Varshney,
- Abstract summary: We present a scalable attack strategy: intent-hiding adversarial prompting, which conceals malicious intent through the composition of skills.<n>Our analysis identifies equilibrium points and reveals structural advantages for the attacker.<n> Empirically, we validate the attack's effectiveness on multiple real-world LLMs across a range of malicious behaviors.
- Score: 15.387256204743407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large language models (LLMs) grow more capable, concerns about their safe deployment have also grown. Although alignment mechanisms have been introduced to deter misuse, they remain vulnerable to carefully designed adversarial prompts. In this work, we present a scalable attack strategy: intent-hiding adversarial prompting, which conceals malicious intent through the composition of skills. We develop a game-theoretic framework to model the interaction between such attacks and defense systems that apply both prompt and response filtering. Our analysis identifies equilibrium points and reveals structural advantages for the attacker. To counter these threats, we propose and analyze a defense mechanism tailored to intent-hiding attacks. Empirically, we validate the attack's effectiveness on multiple real-world LLMs across a range of malicious behaviors, demonstrating clear advantages over existing adversarial prompting techniques.
Related papers
- Chasing Moving Targets with Online Self-Play Reinforcement Learning for Safer Language Models [55.28518567702213]
Conventional language model (LM) safety alignment relies on a reactive, disjoint procedure: attackers exploit a static model, followed by defensive fine-tuning to patch exposed vulnerabilities.<n>This sequential approach creates a mismatch -- attackers overfit to obsolete defenses, while defenders perpetually lag behind emerging threats.<n>We propose Self-RedTeam, an online self-play reinforcement learning algorithm where an attacker and defender agent co-evolve through continuous interaction.
arXiv Detail & Related papers (2025-06-09T06:35:12Z) - Mind the Gap: Detecting Black-box Adversarial Attacks in the Making through Query Update Analysis [3.795071937009966]
Adrial attacks can jeopardize the integrity of Machine Learning (ML) models.<n>We propose a framework that detects if an adversarial noise instance is being generated.<n>We evaluate our approach against 8 state-of-the-art attacks, including adaptive attacks.
arXiv Detail & Related papers (2025-03-04T20:25:12Z) - Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions [51.51850981481236]
We introduce POATE, a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses.<n>PoATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety.<n>To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses.
arXiv Detail & Related papers (2025-01-03T15:40:03Z) - Dynamics of Adversarial Attacks on Large Language Model-Based Search Engines [7.260315265550391]
We study the dynamics of ranking manipulation attacks in search engines.<n>We identify tipping points in the system dynamics, demonstrating that cooperation is more likely to be sustained when players are forward-looking.<n>Our work provides a theoretical foundation and practical insights for understanding and mitigating their vulnerabilities.
arXiv Detail & Related papers (2025-01-01T06:23:26Z) - A Novel Approach to Guard from Adversarial Attacks using Stable Diffusion [0.0]
Our proposal suggests a different approach to the AI Guardian framework.
Instead of including adversarial examples in the training process, we propose training the AI system without them.
This aims to create a system that is inherently resilient to a wider range of attacks.
arXiv Detail & Related papers (2024-05-03T04:08:15Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
We show how contrastive backdoor attacks operate through distinctive mechanisms.
Our findings highlight the need for defenses tailored to the specificities of contrastive backdoor attacks.
arXiv Detail & Related papers (2023-12-14T15:54:52Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Ares: A System-Oriented Wargame Framework for Adversarial ML [3.197282271064602]
Ares is an evaluation framework for adversarial ML that allows researchers to explore attacks and defenses in a realistic wargame-like environment.
Ares frames the conflict between the attacker and defender as two agents in a reinforcement learning environment with opposing objectives.
This allows the introduction of system-level evaluation metrics such as time to failure and evaluation of complex strategies.
arXiv Detail & Related papers (2022-10-24T04:55:18Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Deflecting Adversarial Attacks [94.85315681223702]
We present a new approach towards ending this cycle where we "deflect" adversarial attacks by causing the attacker to produce an input that resembles the attack's target class.
We first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance.
arXiv Detail & Related papers (2020-02-18T06:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.