Dub-S2ST: Textless Speech-to-Speech Translation for Seamless Dubbing
- URL: http://arxiv.org/abs/2505.20899v1
- Date: Tue, 27 May 2025 08:43:28 GMT
- Title: Dub-S2ST: Textless Speech-to-Speech Translation for Seamless Dubbing
- Authors: Jeongsoo Choi, Jaehun Kim, Joon Son Chung,
- Abstract summary: Cross-lingual dubbing system translates speech from one language to another while preserving key characteristics such as duration, speaker identity, and speaking speed.<n>We propose a discrete diffusion-based speech-to-unit translation model with explicit duration control, enabling time-aligned translation.<n>We then synthesize speech based on the predicted units and source identity with a conditional flow matching model.
- Score: 15.134076873312809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a cross-lingual dubbing system that translates speech from one language to another while preserving key characteristics such as duration, speaker identity, and speaking speed. Despite the strong translation quality of existing speech translation approaches, they often overlook the transfer of speech patterns, leading to mismatches with source speech and limiting their suitability for dubbing applications. To address this, we propose a discrete diffusion-based speech-to-unit translation model with explicit duration control, enabling time-aligned translation. We then synthesize speech based on the predicted units and source identity with a conditional flow matching model. Additionally, we introduce a unit-based speed adaptation mechanism that guides the translation model to produce speech at a rate consistent with the source, without relying on any text. Extensive experiments demonstrate that our framework generates natural and fluent translations that align with the original speech's duration and speaking pace, while achieving competitive translation performance.
Related papers
- High-Fidelity Simultaneous Speech-To-Speech Translation [75.69884829562591]
We introduce Hibiki, a decoder-only model for simultaneous speech translation.<n>Hibiki leverages a multistream language model to synchronously process source and target speech, and jointly produces text and audio tokens to perform speech-to-text and speech-to-speech translation.
arXiv Detail & Related papers (2025-02-05T17:18:55Z) - TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
We introduce a novel model framework TransVIP that leverages diverse datasets in a cascade fashion.
We propose two separated encoders to preserve the speaker's voice characteristics and isochrony from the source speech during the translation process.
Our experiments on the French-English language pair demonstrate that our model outperforms the current state-of-the-art speech-to-speech translation model.
arXiv Detail & Related papers (2024-05-28T04:11:37Z) - Improving Isochronous Machine Translation with Target Factors and
Auxiliary Counters [71.02335065794384]
We introduce target factors in a transformer model to predict durations jointly with target language phoneme sequences.
We show that our model improves translation quality and isochrony compared to previous work.
arXiv Detail & Related papers (2023-05-22T16:36:04Z) - Jointly Optimizing Translations and Speech Timing to Improve Isochrony
in Automatic Dubbing [71.02335065794384]
We propose a model that directly optimize both the translation as well as the speech duration of the generated translations.
We show that this system generates speech that better matches the timing of the original speech, compared to prior work, while simplifying the system architecture.
arXiv Detail & Related papers (2023-02-25T04:23:25Z) - VideoDubber: Machine Translation with Speech-Aware Length Control for
Video Dubbing [73.56970726406274]
Video dubbing aims to translate the original speech in a film or television program into the speech in a target language.
To ensure the translated speech to be well aligned with the corresponding video, the length/duration of the translated speech should be as close as possible to that of the original speech.
We propose a machine translation system tailored for the task of video dubbing, which directly considers the speech duration of each token in translation.
arXiv Detail & Related papers (2022-11-30T12:09:40Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
End-to-end speech translation aims to translate speech in one language into text in another language via an end-to-end way.
Most existing methods employ an encoder-decoder structure with a single encoder to learn acoustic representation and semantic information simultaneously.
We propose a Speech-to-Text Adaptation for Speech Translation model which aims to improve the end-to-end model performance by bridging the modality gap between speech and text.
arXiv Detail & Related papers (2020-10-28T12:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.