Semantic Communication meets System 2 ML: How Abstraction, Compositionality and Emergent Languages Shape Intelligence
- URL: http://arxiv.org/abs/2505.20964v1
- Date: Tue, 27 May 2025 09:57:12 GMT
- Title: Semantic Communication meets System 2 ML: How Abstraction, Compositionality and Emergent Languages Shape Intelligence
- Authors: Mehdi Bennis, Salem Lahlou,
- Abstract summary: We propose a unified research vision rooted in the principles of System-2 cognition.<n>We lay the groundwork for truly intelligent systems that can reason, adapt, and collaborate.
- Score: 35.03380046163083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The trajectories of 6G and AI are set for a creative collision. However, current visions for 6G remain largely incremental evolutions of 5G, while progress in AI is hampered by brittle, data-hungry models that lack robust reasoning capabilities. This paper argues for a foundational paradigm shift, moving beyond the purely technical level of communication toward systems capable of semantic understanding and effective, goal-oriented interaction. We propose a unified research vision rooted in the principles of System-2 cognition, built upon three pillars: Abstraction, enabling agents to learn meaningful world models from raw sensorimotor data; Compositionality, providing the algebraic tools to combine learned concepts and subsystems; and Emergent Communication, allowing intelligent agents to create their own adaptive and grounded languages. By integrating these principles, we lay the groundwork for truly intelligent systems that can reason, adapt, and collaborate, unifying advances in wireless communications, machine learning, and robotics under a single coherent framework.
Related papers
- From Large AI Models to Agentic AI: A Tutorial on Future Intelligent Communications [57.38526350775472]
This tutorial provides a systematic introduction to the principles, design, and applications of Large Artificial Intelligence Models (LAMs) and Agentic AI technologies.<n>We outline the background of 6G communications, review the technological evolution from LAMs to Agentic AI, and clarify the tutorial's motivation and main contributions.
arXiv Detail & Related papers (2025-05-28T12:54:07Z) - Vision-Language-Action Models: Concepts, Progress, Applications and Challenges [4.180065442680541]
Vision-Language-Action models aim to unify perception, natural language understanding, and embodied action within a single computational framework.<n>This foundational review presents a comprehensive synthesis of recent advancements in Vision-Language-Action models.<n>Key progress areas include architectural innovations, parameter-efficient training strategies, and real-time inference accelerations.
arXiv Detail & Related papers (2025-05-07T19:46:43Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.<n>We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.<n>The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - AI-native Interconnect Framework for Integration of Large Language Model
Technologies in 6G Systems [3.5370806221677245]
This paper explores the seamless integration of Large Language Models (LLMs) and Generalized Pretrained Transformers (GPT) within 6G systems.
LLMs and GPTs will collaboratively take center stage alongside traditional pre-generative AI and machine learning (ML) algorithms.
arXiv Detail & Related papers (2023-11-10T02:59:16Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - Building Human-like Communicative Intelligence: A Grounded Perspective [1.0152838128195465]
After making astounding progress in language learning, AI systems seem to approach the ceiling that does not reflect important aspects of human communicative capacities.
This paper suggests that the dominant cognitively-inspired AI directions, based on nativist and symbolic paradigms, lack necessary substantiation and concreteness to guide progress in modern AI.
I propose a list of concrete, implementable components for building "grounded" linguistic intelligence.
arXiv Detail & Related papers (2022-01-02T01:43:24Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6G will revolutionize the evolution of wireless from "connected things" to "connected intelligence"
Deep learning and big data analytics based AI systems require tremendous computation and communication resources.
edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence.
arXiv Detail & Related papers (2021-11-24T11:47:16Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.