Minute-Long Videos with Dual Parallelisms
- URL: http://arxiv.org/abs/2505.21070v2
- Date: Thu, 29 May 2025 01:34:08 GMT
- Title: Minute-Long Videos with Dual Parallelisms
- Authors: Zeqing Wang, Bowen Zheng, Xingyi Yang, Zhenxiong Tan, Yuecong Xu, Xinchao Wang,
- Abstract summary: Diffusion Transformer (DiT)-based video diffusion models generate high-quality videos at scale but incur prohibitive processing latency and memory costs for long videos.<n>We propose a novel distributed inference strategy, termed DualParal.<n>Instead of generating an entire video on a single GPU, we parallelize both temporal frames and model layers across GPUs.
- Score: 57.22737565366549
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion Transformer (DiT)-based video diffusion models generate high-quality videos at scale but incur prohibitive processing latency and memory costs for long videos. To address this, we propose a novel distributed inference strategy, termed DualParal. The core idea is that, instead of generating an entire video on a single GPU, we parallelize both temporal frames and model layers across GPUs. However, a naive implementation of this division faces a key limitation: since diffusion models require synchronized noise levels across frames, this implementation leads to the serialization of original parallelisms. We leverage a block-wise denoising scheme to handle this. Namely, we process a sequence of frame blocks through the pipeline with progressively decreasing noise levels. Each GPU handles a specific block and layer subset while passing previous results to the next GPU, enabling asynchronous computation and communication. To further optimize performance, we incorporate two key enhancements. Firstly, a feature cache is implemented on each GPU to store and reuse features from the prior block as context, minimizing inter-GPU communication and redundant computation. Secondly, we employ a coordinated noise initialization strategy, ensuring globally consistent temporal dynamics by sharing initial noise patterns across GPUs without extra resource costs. Together, these enable fast, artifact-free, and infinitely long video generation. Applied to the latest diffusion transformer video generator, our method efficiently produces 1,025-frame videos with up to 6.54$\times$ lower latency and 1.48$\times$ lower memory cost on 8$\times$RTX 4090 GPUs.
Related papers
- Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading [2.8231000588510757]
Transformers and large language models(LLMs) have seen rapid adoption in all domains.
Training of transformers is very expensive and often hits a memory wall''
We propose a novel technique to split the LLM into subgroups, whose update phase is scheduled on either the CPU or the GPU.
arXiv Detail & Related papers (2024-10-26T00:43:59Z) - Pyramidal Flow Matching for Efficient Video Generative Modeling [67.03504440964564]
This work introduces a unified pyramidal flow matching algorithm.<n>It sacrifices the original denoising trajectory as a series of pyramid stages, where only the final stage operates at the full resolution.<n>The entire framework can be optimized in an end-to-end manner and with a single unified Diffusion Transformer (DiT)
arXiv Detail & Related papers (2024-10-08T12:10:37Z) - Video-Infinity: Distributed Long Video Generation [73.30145218077074]
Diffusion models have recently achieved remarkable results for video generation.
Our method generates videos up to 2,300 frames in approximately 5 minutes, enabling long video generation at a speed 100 times faster than the prior methods.
arXiv Detail & Related papers (2024-06-24T01:56:12Z) - AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising [49.785626309848276]
AsyncDiff is a universal and plug-and-play acceleration scheme that enables model parallelism across multiple devices.
For the Stable Diffusion v2.1, AsyncDiff achieves a 2.7x speedup with negligible degradation and a 4.0x speedup with only a slight reduction of 0.38 in CLIP Score.
Our experiments also demonstrate that AsyncDiff can be readily applied to video diffusion models with encouraging performances.
arXiv Detail & Related papers (2024-06-11T03:09:37Z) - NUWA-XL: Diffusion over Diffusion for eXtremely Long Video Generation [157.07019458623242]
NUWA-XL is a novel Diffusion over Diffusion architecture for eXtremely Long generation.
Our approach adopts a coarse-to-fine'' process, in which the video can be generated in parallel at the same granularity.
Experiments show that our model not only generates high-quality long videos with both global and local coherence, but also decreases the average inference time from 7.55min to 26s.
arXiv Detail & Related papers (2023-03-22T07:10:09Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
We study training algorithms for deep learning on heterogeneous CPU+GPU architectures.
Our two-fold objective -- maximize convergence rate and resource utilization simultaneously -- makes the problem challenging.
We show that the implementation of these algorithms achieves both faster convergence and higher resource utilization than on several real datasets.
arXiv Detail & Related papers (2020-04-19T05:21:20Z) - Efficient Video Semantic Segmentation with Labels Propagation and
Refinement [138.55845680523908]
This paper tackles the problem of real-time semantic segmentation of high definition videos using a hybrid GPU / CPU approach.
We propose an Efficient Video(EVS) pipeline that combines: (i) On the CPU, a very fast optical flow method, that is used to exploit the temporal aspect of the video and propagate semantic information from one frame to the next.
On the popular Cityscapes dataset with high resolution frames (2048 x 1024), the proposed operating points range from 80 to 1000 Hz on a single GPU and CPU.
arXiv Detail & Related papers (2019-12-26T11:45:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.