Finite Sample Analysis of Linear Temporal Difference Learning with Arbitrary Features
- URL: http://arxiv.org/abs/2505.21391v1
- Date: Tue, 27 May 2025 16:17:49 GMT
- Title: Finite Sample Analysis of Linear Temporal Difference Learning with Arbitrary Features
- Authors: Zixuan Xie, Xinyu Liu, Rohan Chandra, Shangtong Zhang,
- Abstract summary: This paper establishes the first $L2$ convergence rates for linear TD($lambda$) operating under arbitrary features.<n>To address the potential non-uniqueness of solutions resulting from arbitrary features, we develop a novel approximation result featuring convergence rates to the solution set instead of a single point.
- Score: 33.19711311247482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Linear TD($\lambda$) is one of the most fundamental reinforcement learning algorithms for policy evaluation. Previously, convergence rates are typically established under the assumption of linearly independent features, which does not hold in many practical scenarios. This paper instead establishes the first $L^2$ convergence rates for linear TD($\lambda$) operating under arbitrary features, without making any algorithmic modification or additional assumptions. Our results apply to both the discounted and average-reward settings. To address the potential non-uniqueness of solutions resulting from arbitrary features, we develop a novel stochastic approximation result featuring convergence rates to the solution set instead of a single point.
Related papers
- Sample Complexity of the Linear Quadratic Regulator: A Reinforcement Learning Lens [11.98212766542468]
We provide the first known algorithm that achieves $varepsilon$-optimality within $widetildemathcalO (1/varepsilon)$ function evaluations.
Our results substantially improve upon the existing literature outside the realm of two-point gradient estimates.
arXiv Detail & Related papers (2024-04-16T18:54:57Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Offline Primal-Dual Reinforcement Learning for Linear MDPs [16.782625445546273]
Offline Reinforcement Learning (RL) aims to learn a near-optimal policy from a fixed dataset of transitions collected by another policy.
This paper proposes a primal-dual optimization method based on the linear programming formulation of RL.
arXiv Detail & Related papers (2023-05-22T11:45:23Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision
Processes [80.89852729380425]
We propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $tilde O(dsqrtH3K)$.
Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
arXiv Detail & Related papers (2022-12-12T18:58:59Z) - Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
Nonconvex Optimization [94.19177623349947]
Non-smooth non optimization problems emerge in machine learning and business making.
Two core challenges impede the development of efficient methods with finitetime convergence guarantee.
Two-phase versions of GFM and SGFM are also proposed and proven to achieve improved large-deviation results.
arXiv Detail & Related papers (2022-09-12T06:53:24Z) - Alternating minimization for generalized rank one matrix sensing: Sharp predictions from a random initialization [5.900674344455754]
We show a technique for estimating properties of a rank random matrix with i.i.d.
We show sharp convergence guarantees exact recovery in a single step.
Our analysis also exposes several other properties of this problem.
arXiv Detail & Related papers (2022-07-20T05:31:05Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
We analyze the convergence of single-pass, fixed step-size gradient descent on the least-square risk under this model.
As a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points.
arXiv Detail & Related papers (2020-06-15T08:25:50Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
We address the problem of policy evaluation in discounted decision processes, and provide Markov-dependent guarantees on the $ell_infty$error under a generative model.
We establish both and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby providing an instance-dependent baseline by which to compare algorithms.
arXiv Detail & Related papers (2020-03-16T17:15:28Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.