Algorithms and SQ Lower Bounds for Robustly Learning Real-valued Multi-index Models
- URL: http://arxiv.org/abs/2505.21475v1
- Date: Tue, 27 May 2025 17:47:26 GMT
- Title: Algorithms and SQ Lower Bounds for Robustly Learning Real-valued Multi-index Models
- Authors: Ilias Diakonikolas, Giannis Iakovidis, Daniel M. Kane, Lisheng Ren,
- Abstract summary: We study the complexity of learning real-valued Multi-Index Models (MIMs) under the Gaussian distribution.<n>A $K$-MIM is a function $f:mathbbRdto mathbbR$ that depends only on the projection of its input onto a $K$-dimensional subspace.<n>We give a general algorithm for PAC learning a broad class of MIMs with respect to the square loss, even in the presence of adversarial label noise.
- Score: 34.196233651364615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the complexity of learning real-valued Multi-Index Models (MIMs) under the Gaussian distribution. A $K$-MIM is a function $f:\mathbb{R}^d\to \mathbb{R}$ that depends only on the projection of its input onto a $K$-dimensional subspace. We give a general algorithm for PAC learning a broad class of MIMs with respect to the square loss, even in the presence of adversarial label noise. Moreover, we establish a nearly matching Statistical Query (SQ) lower bound, providing evidence that the complexity of our algorithm is qualitatively optimal as a function of the dimension. Specifically, we consider the class of bounded variation MIMs with the property that degree at most $m$ distinguishing moments exist with respect to projections onto any subspace. In the presence of adversarial label noise, the complexity of our learning algorithm is $d^{O(m)}2^{\mathrm{poly}(K/\epsilon)}$. For the realizable and independent noise settings, our algorithm incurs complexity $d^{O(m)}2^{\mathrm{poly}(K)}(1/\epsilon)^{O(K)}$. To complement our upper bound, we show that if for some subspace degree-$m$ distinguishing moments do not exist, then any SQ learner for the corresponding class of MIMs requires complexity $d^{\Omega(m)}$. As an application, we give the first efficient learner for the class of positive-homogeneous $L$-Lipschitz $K$-MIMs. The resulting algorithm has complexity $\mathrm{poly}(d) 2^{\mathrm{poly}(KL/\epsilon)}$. This gives a new PAC learning algorithm for Lipschitz homogeneous ReLU networks with complexity independent of the network size, removing the exponential dependence incurred in prior work.
Related papers
- Robust Learning of Multi-index Models via Iterative Subspace Approximation [36.138661719725626]
We study the task of learning Multi-Index Models (MIMs) with label noise under the Gaussian distribution.<n>We focus on well-behaved MIMs with finite ranges that satisfy certain regularity properties.<n>We show that in the presence of random classification noise, the complexity of our algorithm scales agnosticly with $1/epsilon$.
arXiv Detail & Related papers (2025-02-13T17:37:42Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Agnostically Learning Multi-index Models with Queries [54.290489524576756]
We study the power of query access for the task of agnostic learning under the Gaussian distribution.
We show that query access gives significant runtime improvements over random examples for agnostically learning MIMs.
arXiv Detail & Related papers (2023-12-27T15:50:47Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Adversarial Online Multi-Task Reinforcement Learning [12.421997449847153]
We consider the adversarial online multi-task reinforcement learning setting.
In each of $K$ episodes the learner is given an unknown task taken from a finite set of $M$ unknown finite-horizon MDP models.
The learner's objective is to generalize its regret with respect to the optimal policy for each task.
arXiv Detail & Related papers (2023-01-11T02:18:26Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z) - Algorithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU
Networks [48.32532049640782]
We study the problem of learning one-hidden-layer ReLU networks with $k$ hidden units on $mathbbRd$ under Gaussian marginals.
For the case of positive coefficients, we give the first-time algorithm for this learning problem for $k$ up to $tildeOOmega(sqrtlog d)$.
arXiv Detail & Related papers (2020-06-22T17:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.