AdInject: Real-World Black-Box Attacks on Web Agents via Advertising Delivery
- URL: http://arxiv.org/abs/2505.21499v1
- Date: Tue, 27 May 2025 17:59:05 GMT
- Title: AdInject: Real-World Black-Box Attacks on Web Agents via Advertising Delivery
- Authors: Haowei Wang, Junjie Wang, Xiaojun Jia, Rupeng Zhang, Mingyang Li, Zhe Liu, Yang Liu, Qing Wang,
- Abstract summary: Vision-Language Model (VLM) based Web Agents represent a step towards automating complex tasks by simulating human-like interaction with websites.<n>Existing research on adversarial environmental injection attacks often relies on unrealistic assumptions.<n>We propose AdInject, a novel and real-world black-box attack method that leverages the internet advertising delivery to inject malicious content into the Web Agent's environment.
- Score: 19.989518524625954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language Model (VLM) based Web Agents represent a significant step towards automating complex tasks by simulating human-like interaction with websites. However, their deployment in uncontrolled web environments introduces significant security vulnerabilities. Existing research on adversarial environmental injection attacks often relies on unrealistic assumptions, such as direct HTML manipulation, knowledge of user intent, or access to agent model parameters, limiting their practical applicability. In this paper, we propose AdInject, a novel and real-world black-box attack method that leverages the internet advertising delivery to inject malicious content into the Web Agent's environment. AdInject operates under a significantly more realistic threat model than prior work, assuming a black-box agent, static malicious content constraints, and no specific knowledge of user intent. AdInject includes strategies for designing malicious ad content aimed at misleading agents into clicking, and a VLM-based ad content optimization technique that infers potential user intents from the target website's context and integrates these intents into the ad content to make it appear more relevant or critical to the agent's task, thus enhancing attack effectiveness. Experimental evaluations demonstrate the effectiveness of AdInject, attack success rates exceeding 60% in most scenarios and approaching 100% in certain cases. This strongly demonstrates that prevalent advertising delivery constitutes a potent and real-world vector for environment injection attacks against Web Agents. This work highlights a critical vulnerability in Web Agent security arising from real-world environment manipulation channels, underscoring the urgent need for developing robust defense mechanisms against such threats. Our code is available at https://github.com/NicerWang/AdInject.
Related papers
- Context manipulation attacks : Web agents are susceptible to corrupted memory [37.66661108936654]
"Plan injection" is a novel context manipulation attack that corrupts these agents' internal task representations by targeting this vulnerable context.<n>We show that plan injections bypass robust prompt injection defenses, achieving up to 3x higher attack success rates than comparable prompt-based attacks.<n>Our findings highlight that secure memory handling must be a first-class concern in agentic systems.
arXiv Detail & Related papers (2025-06-18T14:29:02Z) - Screen Hijack: Visual Poisoning of VLM Agents in Mobile Environments [61.808686396077036]
We present GHOST, the first clean-label backdoor attack specifically designed for mobile agents built upon vision-language models (VLMs)<n>Our method manipulates only the visual inputs of a portion of the training samples without altering their corresponding labels or instructions.<n>We evaluate our method across six real-world Android apps and three VLM architectures adapted for mobile use.
arXiv Detail & Related papers (2025-06-16T08:09:32Z) - VPI-Bench: Visual Prompt Injection Attacks for Computer-Use Agents [74.6761188527948]
Computer-Use Agents (CUAs) with full system access pose significant security and privacy risks.<n>We investigate Visual Prompt Injection (VPI) attacks, where malicious instructions are visually embedded within rendered user interfaces.<n>Our empirical study shows that current CUAs and BUAs can be deceived at rates of up to 51% and 100%, respectively, on certain platforms.
arXiv Detail & Related papers (2025-06-03T05:21:50Z) - The Hidden Dangers of Browsing AI Agents [0.0]
This paper presents a comprehensive security evaluation of such agents, focusing on systemic vulnerabilities across multiple architectural layers.<n>Our work outlines the first end-to-end threat model for browsing agents and provides actionable guidance for securing their deployment in real-world environments.
arXiv Detail & Related papers (2025-05-19T13:10:29Z) - AGENTFUZZER: Generic Black-Box Fuzzing for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentXploit, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentXploit on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - WASP: Benchmarking Web Agent Security Against Prompt Injection Attacks [36.97842000562324]
We introduce WASP -- a new benchmark for end-to-end evaluation of Web Agent Security against Prompt injection attacks.<n>We show that even top-tier AI models, including those with advanced reasoning capabilities, can be deceived by simple, low-effort human-written injections.<n>Our end-to-end evaluation reveals a previously unobserved insight: while attacks partially succeed in up to 86% of the case, even state-of-the-art agents often struggle to fully complete the attacker goals.
arXiv Detail & Related papers (2025-04-22T17:51:03Z) - Attacking Vision-Language Computer Agents via Pop-ups [61.744008541021124]
We show that VLM agents can be easily attacked by a set of carefully designed adversarial pop-ups.<n>This distraction leads agents to click these pop-ups instead of performing their tasks as usual.<n>Basic defense techniques, such as asking the agent to ignore pop-ups or including an advertisement notice, are ineffective against the attack.
arXiv Detail & Related papers (2024-11-04T18:56:42Z) - AdvWeb: Controllable Black-box Attacks on VLM-powered Web Agents [22.682464365220916]
AdvWeb is a novel black-box attack framework designed against web agents.
We train and optimize the adversarial prompter model using DPO.
Unlike prior approaches, our adversarial string injection maintains stealth and control.
arXiv Detail & Related papers (2024-10-22T20:18:26Z) - EIA: Environmental Injection Attack on Generalist Web Agents for Privacy Leakage [40.82238259404402]
We conduct the first study on the privacy risks of generalist web agents in adversarial environments.<n>First, we present a realistic threat model for attacks on the website, where we consider two adversarial targets: stealing users' specific PII or the entire user request.<n>We collect 177 action steps that involve diverse PII categories on realistic websites from the Mind2Web, and conduct experiments using one of the most capable generalist web agent frameworks to date.
arXiv Detail & Related papers (2024-09-17T15:49:44Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.<n>We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.<n>We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.