Vision Transformers with Self-Distilled Registers
- URL: http://arxiv.org/abs/2505.21501v1
- Date: Tue, 27 May 2025 17:59:41 GMT
- Title: Vision Transformers with Self-Distilled Registers
- Authors: Yinjie Chen, Zipeng Yan, Chong Zhou, Bo Dai, Andrew F. Luo,
- Abstract summary: Post Hoc Registers (PH-Reg) is an efficient self-distillation method that integrates registers into an existing ViT without requiring additional labeled data and full retraining.<n>We show that our approach can effectively reduce the number of artifact tokens, improving the segmentation and depth prediction of the student ViT under zero-shot and linear probing.
- Score: 11.649023403110528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision Transformers (ViTs) have emerged as the dominant architecture for visual processing tasks, demonstrating excellent scalability with increased training data and model size. However, recent work has identified the emergence of artifact tokens in ViTs that are incongruous with the local semantics. These anomalous tokens degrade ViT performance in tasks that require fine-grained localization or structural coherence. An effective mitigation of this issue is to the addition of register tokens to ViTs, which implicitly "absorb" the artifact term during training. Given the availability of various large-scale pre-trained ViTs, in this paper we aim at equipping them with such register tokens without the need of re-training them from scratch, which is infeasible considering their size. Specifically, we propose Post Hoc Registers (PH-Reg), an efficient self-distillation method that integrates registers into an existing ViT without requiring additional labeled data and full retraining. PH-Reg initializes both teacher and student networks from the same pre-trained ViT. The teacher remains frozen and unmodified, while the student is augmented with randomly initialized register tokens. By applying test-time augmentation to the teacher's inputs, we generate denoised dense embeddings free of artifacts, which are then used to optimize only a small subset of unlocked student weights. We show that our approach can effectively reduce the number of artifact tokens, improving the segmentation and depth prediction of the student ViT under zero-shot and linear probing.
Related papers
- Vision Transformers Don't Need Trained Registers [17.412430704896455]
A sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens.<n>We create a training-free approach to mitigate these artifacts.<n>Our results suggest that test-time registers effectively take on the role of register tokens at test-time.
arXiv Detail & Related papers (2025-06-09T17:59:57Z) - Random Registers for Cross-Domain Few-Shot Learning [19.199947811410123]
Cross-domain few-shot learning aims to transfer knowledge from a data-sufficient source domain to data-scarce target domains.<n>We find that during the source-domain training, prompt tuning, as a common way to train ViT, could be harmful for the generalization of ViT in target domains.<n>We propose a simple but effective approach for CDFSL by adding random registers on the semantic regions of image tokens.
arXiv Detail & Related papers (2025-06-03T13:13:58Z) - ExPLoRA: Parameter-Efficient Extended Pre-Training to Adapt Vision Transformers under Domain Shifts [52.1635661239108]
We introduce ExPLoRA, a highly effective technique to improve transfer learning of pre-trained vision transformers (ViTs) under domain shifts.<n>Our experiments demonstrate state-of-the-art results on satellite imagery, even outperforming fully pre-training and fine-tuning ViTs.
arXiv Detail & Related papers (2024-06-16T15:14:56Z) - Sparse-Tuning: Adapting Vision Transformers with Efficient Fine-tuning and Inference [14.030836300221756]
textbfSparse-Tuning is a novel PEFT method that accounts for the information redundancy in images and videos.
Sparse-Tuning minimizes the quantity of tokens processed at each layer, leading to a quadratic reduction in computational and memory overhead.
Our results show that our Sparse-Tuning reduces GFLOPs to textbf62%-70% of the original ViT-B while achieving state-of-the-art performance.
arXiv Detail & Related papers (2024-05-23T15:34:53Z) - DeiT-LT Distillation Strikes Back for Vision Transformer Training on Long-Tailed Datasets [30.178427266135756]
Vision Transformer (ViT) has emerged as a prominent architecture for various computer vision tasks.
ViT requires a large amount of data for pre-training.
We introduce DeiT-LT to tackle the problem of training ViTs from scratch on long-tailed datasets.
arXiv Detail & Related papers (2024-04-03T17:58:21Z) - The Emergence of Essential Sparsity in Large Pre-trained Models: The
Weights that Matter [113.35761858962522]
This paper studies induced sparse patterns across multiple large pre-trained vision and language transformers.
We propose the existence of essential sparsity defined with a sharp dropping point beyond which the performance declines much faster.
We also find essential sparsity to hold valid for N:M sparsity patterns as well as on modern-scale large language models.
arXiv Detail & Related papers (2023-06-06T15:49:09Z) - Rethinking Hierarchicies in Pre-trained Plain Vision Transformer [76.35955924137986]
Self-supervised pre-training vision transformer (ViT) via masked image modeling (MIM) has been proven very effective.
customized algorithms should be carefully designed for the hierarchical ViTs, e.g., GreenMIM, instead of using the vanilla and simple MAE for the plain ViT.
This paper proposes a novel idea of disentangling the hierarchical architecture design from the self-supervised pre-training.
arXiv Detail & Related papers (2022-11-03T13:19:23Z) - Patch-level Representation Learning for Self-supervised Vision
Transformers [68.8862419248863]
Vision Transformers (ViTs) have gained much attention recently as a better architectural choice, often outperforming convolutional networks for various visual tasks.
Inspired by this, we design a simple yet effective visual pretext task, coined SelfPatch, for learning better patch-level representations.
We demonstrate that SelfPatch can significantly improve the performance of existing SSL methods for various visual tasks.
arXiv Detail & Related papers (2022-06-16T08:01:19Z) - Self-Promoted Supervision for Few-Shot Transformer [178.52948452353834]
Self-promoted sUpervisioN (SUN) is a few-shot learning framework for vision transformers (ViTs)
SUN pretrains the ViT on the few-shot learning dataset and then uses it to generate individual location-specific supervision for guiding each patch token.
Experiments show that SUN using ViTs significantly surpasses other few-shot learning frameworks with ViTs and is the first one that achieves higher performance than those CNN state-of-the-arts.
arXiv Detail & Related papers (2022-03-14T12:53:27Z) - Self-slimmed Vision Transformer [52.67243496139175]
Vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks.
We propose a generic self-slimmed learning approach for vanilla ViTs, namely SiT.
Specifically, we first design a novel Token Slimming Module (TSM), which can boost the inference efficiency of ViTs.
arXiv Detail & Related papers (2021-11-24T16:48:57Z) - On Improving Adversarial Transferability of Vision Transformers [97.17154635766578]
Vision transformers (ViTs) process input images as sequences of patches via self-attention.
We study the adversarial feature space of ViT models and their transferability.
We introduce two novel strategies specific to the architecture of ViT models.
arXiv Detail & Related papers (2021-06-08T08:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.