StreamLink: Large-Language-Model Driven Distributed Data Engineering System
- URL: http://arxiv.org/abs/2505.21575v1
- Date: Tue, 27 May 2025 07:44:16 GMT
- Title: StreamLink: Large-Language-Model Driven Distributed Data Engineering System
- Authors: Dawei Feng, Di Mei, Huiri Tan, Lei Ren, Xianying Lou, Zhangxi Tan,
- Abstract summary: Large Language Models (LLMs) have shown remarkable proficiency in natural language understanding (NLU)<n>We introduce StreamLink - an LLM-driven distributed data system designed to improve the efficiency and accessibility of data engineering tasks.
- Score: 2.8237743652666656
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) have shown remarkable proficiency in natural language understanding (NLU), opening doors for innovative applications. We introduce StreamLink - an LLM-driven distributed data system designed to improve the efficiency and accessibility of data engineering tasks. We build StreamLink on top of distributed frameworks such as Apache Spark and Hadoop to handle large data at scale. One of the important design philosophies of StreamLink is to respect user data privacy by utilizing local fine-tuned LLMs instead of a public AI service like ChatGPT. With help from domain-adapted LLMs, we can improve our system's understanding of natural language queries from users in various scenarios and simplify the procedure of generating database queries like the Structured Query Language (SQL) for information processing. We also incorporate LLM-based syntax and security checkers to guarantee the reliability and safety of each generated query. StreamLink illustrates the potential of merging generative LLMs with distributed data processing for comprehensive and user-centric data engineering. With this architecture, we allow users to interact with complex database systems at different scales in a user-friendly and security-ensured manner, where the SQL generation reaches over 10\% of execution accuracy compared to baseline methods, and allow users to find the most concerned item from hundreds of millions of items within a few seconds using natural language.
Related papers
- Large Language Models are Good Relational Learners [55.40941576497973]
We introduce Rel-LLM, a novel architecture that utilizes a graph neural network (GNN)- based encoder to generate structured relational prompts for large language models (LLMs)<n>Unlike traditional text-based serialization approaches, our method preserves the inherent relational structure of databases while enabling LLMs to process and reason over complex entity relationships.
arXiv Detail & Related papers (2025-06-06T04:07:55Z) - A New Paradigm of User-Centric Wireless Communication Driven by Large Language Models [53.16213723669751]
Next generation of wireless communications seeks to deeply integrate artificial intelligence with user-centric communication networks.<n>We propose a novel paradigm for wireless communication that innovatively incorporates the nature language to structured query language.<n>We present a prototype system in which a dynamic semantic representation network at the physical layer adapts its encoding depth to meet user requirements.
arXiv Detail & Related papers (2025-04-16T01:43:36Z) - Relational Database Augmented Large Language Model [59.38841050766026]
Large language models (LLMs) excel in many natural language processing (NLP) tasks.
They can only incorporate new knowledge through training or supervised fine-tuning processes.
This precise, up-to-date, and private information is typically stored in relational databases.
arXiv Detail & Related papers (2024-07-21T06:19:10Z) - Automating Pharmacovigilance Evidence Generation: Using Large Language Models to Produce Context-Aware SQL [0.0]
We utilize OpenAI's GPT-4 model within a retrieval-augmented generation (RAG) framework.
Business context document is enriched with a business context document, to transform NLQs into Structured Query Language queries.
Performance achieved a maximum of 85% when high complexity queries are excluded.
arXiv Detail & Related papers (2024-06-15T17:07:31Z) - ERATTA: Extreme RAG for Table To Answers with Large Language Models [1.3318204310917532]
Large language models (LLMs) with retrieval augmented-generation (RAG) have been the optimal choice for scalable generative AI solutions.
We propose a unique LLM-based system where multiple LLMs can be invoked to enable data authentication, user-query routing, data-retrieval and custom prompting for question-answering capabilities from Enterprise-data tables.
Our proposed system and scoring metrics achieve >90% confidence scores across hundreds of user queries in the sustainability, financial health and social media domains.
arXiv Detail & Related papers (2024-05-07T02:49:59Z) - Structure Guided Large Language Model for SQL Generation [14.079764882536077]
We propose a novel structure-aware text-to- query and framework(SGU)<n>SGU-aware text-to- query and framework(SGU) consistently outperforms state-of-the-art text-to-models.
arXiv Detail & Related papers (2024-02-19T09:07:59Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
arXiv Detail & Related papers (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - Querying Large Language Models with SQL [16.383179496709737]
In many use-cases, information is stored in text but not available in structured data.
With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents.
We present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM.
arXiv Detail & Related papers (2023-04-02T06:58:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.