Fairness in Federated Learning: Fairness for Whom?
- URL: http://arxiv.org/abs/2505.21584v1
- Date: Tue, 27 May 2025 10:41:19 GMT
- Title: Fairness in Federated Learning: Fairness for Whom?
- Authors: Afaf Taik, Khaoula Chehbouni, Golnoosh Farnadi,
- Abstract summary: We argue that existing approaches tend to optimize narrow system level metrics, while overlooking how harms arise throughout the FL lifecycle.<n>Our analysis reveals five recurring pitfalls: 1) fairness framed solely through the lens of server client architecture, 2) a mismatch between simulations and motivating use-cases and contexts, 3) definitions that conflate protecting the system with protecting its users, 4) interventions that target isolated stages of the lifecycle while upstream and downstream effects, 5) and a lack of multi-stakeholder alignment where multiple fairness definitions can be relevant at once.
- Score: 4.276697874428501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness in federated learning has emerged as a rapidly growing area of research, with numerous works proposing formal definitions and algorithmic interventions. Yet, despite this technical progress, fairness in FL is often defined and evaluated in ways that abstract away from the sociotechnical contexts in which these systems are deployed. In this paper, we argue that existing approaches tend to optimize narrow system level metrics, such as performance parity or contribution-based rewards, while overlooking how harms arise throughout the FL lifecycle and how they impact diverse stakeholders. We support this claim through a critical analysis of the literature, based on a systematic annotation of papers for their fairness definitions, design decisions, evaluation practices, and motivating use cases. Our analysis reveals five recurring pitfalls: 1) fairness framed solely through the lens of server client architecture, 2) a mismatch between simulations and motivating use-cases and contexts, 3) definitions that conflate protecting the system with protecting its users, 4) interventions that target isolated stages of the lifecycle while neglecting upstream and downstream effects, 5) and a lack of multi-stakeholder alignment where multiple fairness definitions can be relevant at once. Building on these insights, we propose a harm centered framework that links fairness definitions to concrete risks and stakeholder vulnerabilities. We conclude with recommendations for more holistic, context-aware, and accountable fairness research in FL.
Related papers
- Bounded Rationality for LLMs: Satisficing Alignment at Inference-Time [52.230936493691985]
We propose SITAlign, an inference framework that addresses the multifaceted nature of alignment by maximizing a primary objective while satisfying threshold-based constraints on secondary criteria.<n>We provide theoretical insights by deriving sub-optimality bounds of our satisficing based inference alignment approach.
arXiv Detail & Related papers (2025-05-29T17:56:05Z) - Does Representation Intervention Really Identify Desired Concepts and Elicit Alignment? [73.80382983108997]
Representation intervention aims to locate and modify the representations that encode the underlying concepts in Large Language Models.<n>If the interventions are faithful, the intervened LLMs should erase the harmful concepts and be robust to both in-distribution adversarial prompts and the out-of-distribution jailbreaks.<n>We propose Concept Concentration (COCA), which simplifies the decision boundary between harmful and benign representations.
arXiv Detail & Related papers (2025-05-24T12:23:52Z) - Modelling and Classification of Fairness Patterns for Designing Sustainable Information Systems [0.2867517731896504]
This paper explores the concept of fairness in sociotechnical system design.<n>It is based on a reference sustainability meta-model capturing the concepts of value, assumption, regulation, metric and task.
arXiv Detail & Related papers (2024-11-26T21:23:56Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
We propose a comprehensive approach to uncover the causes of discrimination in Machine Learning applications.
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions.
This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence emphon the bias.
arXiv Detail & Related papers (2023-08-22T00:10:23Z) - ACROCPoLis: A Descriptive Framework for Making Sense of Fairness [6.4686347616068005]
We propose the ACROCPoLis framework to represent allocation processes with a modeling emphasis on fairness aspects.
The framework provides a shared vocabulary in which the factors relevant to fairness assessments for different situations and procedures are made explicit.
arXiv Detail & Related papers (2023-04-19T21:14:57Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - Fairness in Contextual Resource Allocation Systems: Metrics and
Incompatibility Results [7.705334602362225]
We study systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing.
These systems often support communities disproportionately affected by systemic racial, gender, or other injustices.
We propose a framework for evaluating fairness in contextual resource allocation systems inspired by fairness metrics in machine learning.
arXiv Detail & Related papers (2022-12-04T02:30:58Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
We develop a value-based assessment framework that visualizes closeness and tensions between values.
We give guidelines on how to operationalize them, while opening up the evaluation and deliberation process to a wide range of stakeholders.
arXiv Detail & Related papers (2022-05-09T19:28:32Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Fairness Through Counterfactual Utilities [0.0]
Group fairness definitions such as Demographic Parity and Equal Opportunity make assumptions about the underlying decision-problem that restrict them to classification problems.
We provide a generalized set of group fairness definitions that unambiguously extend to all machine learning environments.
arXiv Detail & Related papers (2021-08-11T16:51:27Z) - Inter-class Discrepancy Alignment for Face Recognition [55.578063356210144]
We propose a unified framework calledInter-class DiscrepancyAlignment(IDA)
IDA-DAO is used to align the similarity scores considering the discrepancy between the images and its neighbors.
IDA-SSE can provide convincing inter-class neighbors by introducing virtual candidate images generated with GAN.
arXiv Detail & Related papers (2021-03-02T08:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.