Efficient Diffusion Models for Symmetric Manifolds
- URL: http://arxiv.org/abs/2505.21640v1
- Date: Tue, 27 May 2025 18:12:29 GMT
- Title: Efficient Diffusion Models for Symmetric Manifolds
- Authors: Oren Mangoubi, Neil He, Nisheeth K. Vishnoi,
- Abstract summary: We introduce a framework for designing efficient diffusion models for $d$-dimensional symmetric-space.<n>Mandela symmetries ensure the diffusion satisfies an "average-case" Lipschitz condition.<n>Our model outperforms prior methods in training speed and improves sample quality on synthetic datasets.
- Score: 25.99200001269046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a framework for designing efficient diffusion models for $d$-dimensional symmetric-space Riemannian manifolds, including the torus, sphere, special orthogonal group and unitary group. Existing manifold diffusion models often depend on heat kernels, which lack closed-form expressions and require either $d$ gradient evaluations or exponential-in-$d$ arithmetic operations per training step. We introduce a new diffusion model for symmetric manifolds with a spatially-varying covariance, allowing us to leverage a projection of Euclidean Brownian motion to bypass heat kernel computations. Our training algorithm minimizes a novel efficient objective derived via Ito's Lemma, allowing each step to run in $O(1)$ gradient evaluations and nearly-linear-in-$d$ ($O(d^{1.19})$) arithmetic operations, reducing the gap between diffusions on symmetric manifolds and Euclidean space. Manifold symmetries ensure the diffusion satisfies an "average-case" Lipschitz condition, enabling accurate and efficient sample generation. Empirically, our model outperforms prior methods in training speed and improves sample quality on synthetic datasets on the torus, special orthogonal group, and unitary group.
Related papers
- Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
We provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models.<n>We propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality.
arXiv Detail & Related papers (2025-03-04T17:46:51Z) - Rao-Blackwell Gradient Estimators for Equivariant Denoising Diffusion [41.50816120270017]
In domains such as molecular and protein generation, physical systems exhibit inherent symmetries that are critical to model.<n>We present a framework that reduces training variance and provides a provably lower-variance gradient estimator.<n>We also present a practical implementation of this estimator incorporating the loss and sampling procedure through a method we call Orbit Diffusion.
arXiv Detail & Related papers (2025-02-14T03:26:57Z) - Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.<n>Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.<n>Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - Stochastic Runge-Kutta Methods: Provable Acceleration of Diffusion Models [21.961189407928853]
We propose and analyze a training-free acceleration algorithm for SDE-style diffusion samplers, based on the KL Runge-Kutta method.
The proposed sampler provably attains $varepsilon2$ error -- measured in divergence -- using $widetilde O(d3/2 / varepsilon)$ score function evaluations.
arXiv Detail & Related papers (2024-10-07T05:34:51Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
In this work we explore a family of expressive and interpretable distributions over circle-valued random functions.<n>For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling.<n>We present experiments applying this model to the prediction of wind directions and the percentage of the running gait cycle as a function of joint angles.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
We introduce a principled framework for building a generative diffusion process on general manifold.
Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes.
We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points.
arXiv Detail & Related papers (2023-10-11T06:04:40Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
We introduce a manifold learning-based method for uncertainty quantification (UQ) in describing systems.
The proposed method is able to achieve highly accurate approximations which ultimately lead to the significant acceleration of UQ tasks.
arXiv Detail & Related papers (2021-07-21T00:24:15Z) - Intrinsic Gaussian Processes on Manifolds and Their Accelerations by
Symmetry [9.773237080061815]
Existing methods primarily focus on low dimensional constrained domains for heat kernel estimation.
Our research proposes an intrinsic approach for constructing GP on general equations.
Our methodology estimates the heat kernel by simulating Brownian motion sample paths using the exponential map.
arXiv Detail & Related papers (2020-06-25T09:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.