tenSVD algorithm for compression
- URL: http://arxiv.org/abs/2505.21686v1
- Date: Tue, 27 May 2025 19:16:20 GMT
- Title: tenSVD algorithm for compression
- Authors: Michele Gallo,
- Abstract summary: This study introduces an efficient image storage approach utilizing tensors, aiming to minimize memory to store, bandwidth to transmit and energy to processing.<n>A detailed analysis of the results is conducted, employing established quantitative metrics, with significant attention paid to sustainability in terms of energy consumption across algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensors provide a robust framework for managing high-dimensional data. Consequently, tensor analysis has emerged as an active research area in various domains, including machine learning, signal processing, computer vision, graph analysis, and data mining. This study introduces an efficient image storage approach utilizing tensors, aiming to minimize memory to store, bandwidth to transmit and energy to processing. The proposed method organizes original data into a higher-order tensor and applies the Tucker model for compression. Implemented in R, this method is compared to a baseline algorithm. The evaluation focuses on efficient of algorithm measured in term of computational time and the quality of information preserved, using both simulated and real datasets. A detailed analysis of the results is conducted, employing established quantitative metrics, with significant attention paid to sustainability in terms of energy consumption across algorithms.
Related papers
- Power of $\ell_1$-Norm Regularized Kaczmarz Algorithms for High-Order Tensor Recovery [8.812294191190896]
We propose novel Kaczmarz algorithms for recovering high-order tensors characterized by sparse and/or low-rank structures.
A variety of numerical experiments on both synthetic and real-world datasets demonstrate the effectiveness and significant potential of the proposed methods.
arXiv Detail & Related papers (2024-05-14T02:06:53Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Fast and Provable Tensor Robust Principal Component Analysis via Scaled
Gradient Descent [30.299284742925852]
This paper tackles tensor robust principal component analysis (RPCA)
It aims to recover a low-rank tensor from its observations contaminated by sparse corruptions.
We show that the proposed algorithm achieves better and more scalable performance than state-of-the-art matrix and tensor RPCA algorithms.
arXiv Detail & Related papers (2022-06-18T04:01:32Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
We show that the dense correlation volume representation is redundant and accurate flow estimation can be achieved with only a fraction of elements in it.
Experiments show that our method can reduce computational cost and memory use significantly, while maintaining high accuracy.
arXiv Detail & Related papers (2021-04-05T21:44:00Z) - FG-Net: Fast Large-Scale LiDAR Point CloudsUnderstanding Network
Leveraging CorrelatedFeature Mining and Geometric-Aware Modelling [15.059508985699575]
FG-Net is a general deep learning framework for large-scale point clouds understanding without voxelizations.
We propose a deep convolutional neural network leveraging correlated feature mining and deformable convolution based geometric-aware modelling.
Our approaches outperform state-of-the-art approaches in terms of accuracy and efficiency.
arXiv Detail & Related papers (2020-12-17T08:20:09Z) - Fast Reinforcement Learning with Incremental Gaussian Mixture Models [0.0]
An online and incremental algorithm capable of learning from a single pass through data, called Incremental Gaussian Mixture Network (IGMN), was employed as a sample-efficient function approximator for the joint state and Q-values space.
Results are analyzed to explain the properties of the obtained algorithm, and it is observed that the use of the IGMN function approximator brings some important advantages to reinforcement learning in relation to conventional neural networks trained by gradient descent methods.
arXiv Detail & Related papers (2020-11-02T03:18:15Z) - Performance Analysis of Semi-supervised Learning in the Small-data
Regime using VAEs [0.261072980439312]
In this work, we applied an existing algorithm that pre-trains a latent space representation of the data to capture the features in a lower-dimension for the small-data regime input.
The fine-tuned latent space provides constant weights that are useful for classification.
Here we will present the performance analysis of the VAE algorithm with different latent space sizes in the semi-supervised learning.
arXiv Detail & Related papers (2020-02-26T16:19:54Z) - On Coresets for Support Vector Machines [61.928187390362176]
A coreset is a small, representative subset of the original data points.
We show that our algorithm can be used to extend the applicability of any off-the-shelf SVM solver to streaming, distributed, and dynamic data settings.
arXiv Detail & Related papers (2020-02-15T23:25:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.