Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization
- URL: http://arxiv.org/abs/2505.21944v1
- Date: Wed, 28 May 2025 03:55:05 GMT
- Title: Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization
- Authors: Linli Zhou, Bokun Wang, My T. Thai, Tianbao Yang,
- Abstract summary: Two-way partial AUCAUC is a critical performance metric for binary classification with imbalanced data.<n>Existing algorithms for TPAUC optimization remain under-explored.<n>We introduce two innovative double-coordinate block-coordinate algorithms for TPAUC optimization.
- Score: 56.805574957824135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two-way partial AUC (TPAUC) is a critical performance metric for binary classification with imbalanced data, as it focuses on specific ranges of the true positive rate (TPR) and false positive rate (FPR). However, stochastic algorithms for TPAUC optimization remain under-explored, with existing methods either limited to approximated TPAUC loss functions or burdened by sub-optimal complexities. To overcome these limitations, we introduce two innovative stochastic primal-dual double block-coordinate algorithms for TPAUC maximization. These algorithms utilize stochastic block-coordinate updates for both the primal and dual variables, catering to both convex and non-convex settings. We provide theoretical convergence rate analyses, demonstrating significant improvements over prior approaches. Our experimental results, based on multiple benchmark datasets, validate the superior performance of our algorithms, showcasing faster convergence and better generalization. This work advances the state of the art in TPAUC optimization and offers practical tools for real-world machine learning applications.
Related papers
- Efficient Second-Order Neural Network Optimization via Adaptive Trust Region Methods [0.0]
SecondOrderAdaptive (SOAA) is a novel optimization algorithm designed to overcome limitations of traditional second-order techniques.
We empirically demonstrate that SOAA achieves faster and more stable convergence compared to first-order approximations.
arXiv Detail & Related papers (2024-10-03T08:23:06Z) - Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning [5.325297567945828]
We propose a new method for two-time-scale optimization that achieves significantly faster convergence than the prior arts.<n>We show how the proposed algorithm specializes to novel online sample-based methods that surpass or match the performance of the existing state of the art.
arXiv Detail & Related papers (2024-05-15T19:03:08Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way Partial AUC (OPAUC) and Two-way Partial AUC (TPAUC) measures the average performance of a binary classifier.
Most of the existing methods could only optimize PAUC approximately, leading to inevitable biases that are not controllable.
We present a simpler reformulation of the PAUC problem via distributional robust optimization AUC.
arXiv Detail & Related papers (2022-10-08T08:26:22Z) - When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
Non-Convex Convergence Guarantee [51.527543027813344]
We propose systematic and efficient gradient-based methods for both one-way and two-way partial AUC (pAUC)
For both one-way and two-way pAUC, we propose two algorithms and prove their convergence for optimizing their two formulations, respectively.
arXiv Detail & Related papers (2022-03-01T01:59:53Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.