ACE: Exploring Activation Cosine Similarity and Variance for Accurate and Calibration-Efficient LLM Pruning
- URL: http://arxiv.org/abs/2505.21987v1
- Date: Wed, 28 May 2025 05:25:16 GMT
- Title: ACE: Exploring Activation Cosine Similarity and Variance for Accurate and Calibration-Efficient LLM Pruning
- Authors: Zhendong Mi, Zhenglun Kong, Geng Yuan, Shaoyi Huang,
- Abstract summary: We propose an efficient and effective pruning method that simultaneously achieves high pruning performance and fast pruning speed.<n> Experimental results show that our method achieves up to an 18% reduction in perplexity and up to 63% decrease in pruning time on prevalent LLMs.
- Score: 15.933542902352604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid expansion of large language models (LLMs), the demand for memory and computational resources has grown significantly. Recent advances in LLM pruning aim to reduce the size and computational cost of these models. However, existing methods often suffer from either suboptimal pruning performance or low time efficiency during the pruning process. In this work, we propose an efficient and effective pruning method that simultaneously achieves high pruning performance and fast pruning speed with improved calibration efficiency. Our approach introduces two key innovations: (1) An activation cosine similarity loss-guided pruning metric, which considers the angular deviation of the output activation between the dense and pruned models. (2) An activation variance-guided pruning metric, which helps preserve semantic distinctions in output activations after pruning, enabling effective pruning with shorter input sequences. These two components can be readily combined to enhance LLM pruning in both accuracy and efficiency. Experimental results show that our method achieves up to an 18% reduction in perplexity and up to 63% decrease in pruning time on prevalent LLMs such as LLaMA, LLaMA-2, and OPT.
Related papers
- IAM: Efficient Inference through Attention Mapping between Different-scale LLMs [74.81417160018856]
IAM framework achieves dual benefits of accelerated attention computation and reduced KV cache usage.<n>We show that IAM can accelerate prefill by 15% and reduce KV cache usage by 22.1% without appreciably sacrificing performance.
arXiv Detail & Related papers (2025-07-16T06:39:11Z) - R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference [77.47238561728459]
R-Sparse is a training-free activation sparsity approach capable of achieving high sparsity levels in advanced LLMs.<n> Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate that R-Sparse achieves comparable performance at 50% model-level sparsity.
arXiv Detail & Related papers (2025-04-28T03:30:32Z) - ZipR1: Reinforcing Token Sparsity in MLLMs [25.92720050123066]
We propose a simple RL-based post-training method named textbfZipR1 that treats the token reduction ratio as the efficiency reward and answer accuracy as the performance reward.<n> Experimental results demonstrate that ZipR1 can reduce the token ratio of Qwen2/2.5-VL from 80% to 25% with a minimal accuracy reduction on 13 image and video benchmarks.
arXiv Detail & Related papers (2025-04-23T01:45:55Z) - SlimGPT: Layer-wise Structured Pruning for Large Language Models [15.252798256418279]
Batched Greedy Pruning for rapid and near-optimal pruning.<n>Incremental Pruning Ratio, a non-uniform pruning strategy to reduce performance degradation.<n> Experimental results on the LLaMA benchmark show that SlimGPT outperforms other methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-12-24T02:49:50Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Rotated Runtime Smooth: Training-Free Activation Smoother for accurate INT4 inference [54.2589824716527]
Large language models incur substantial computation and memory movement costs due to their large scale.
Existing approaches separate outliers and normal values into two matrices or migrate outliers from activations to weights, suffering from high latency or accuracy degradation.
We propose Rotated Smooth (RRS), a plug-and-play activation smoother for quantization, consisting of Smooth and Rotation operation.
The proposed method outperforms the state-of-the-art method in the LLaMA and Qwen families and improves WikiText-2 perplexity from 57.33 to 6.66 for INT4 inference.
arXiv Detail & Related papers (2024-09-30T14:59:22Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization [13.622268474310918]
ShiftAddLLM is an efficient multiplication-free model for large language models.
It achieves perplexity improvements of 5.6 and 22.7 points at comparable or lower latency.
Experiments on five LLM families and eight tasks consistently validate the effectiveness of ShiftAddLLM.
arXiv Detail & Related papers (2024-06-10T02:47:55Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
We introduce LD-Pruner, a novel performance-preserving structured pruning method for compressing Latent Diffusion Models.
We demonstrate the effectiveness of our approach on three different tasks: text-to-image (T2I) generation, Unconditional Image Generation (UIG) and Unconditional Audio Generation (UAG)
arXiv Detail & Related papers (2024-04-18T06:35:37Z) - Toward Adaptive Large Language Models Structured Pruning via Hybrid-grained Weight Importance Assessment [58.030196381554745]
We introduce the Hybrid-grained Weight Importance Assessment (HyWIA), a novel method that merges fine-grained and coarse-grained evaluations of weight importance for the pruning of large language models (LLMs)<n>Extensive experiments on LLaMA-V1/V2, Vicuna, Baichuan, and Bloom across various benchmarks demonstrate the effectiveness of HyWIA in pruning LLMs.
arXiv Detail & Related papers (2024-03-16T04:12:50Z) - LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning [56.88751562302793]
Low-rank adaption (LoRA) has emerged to fine-tune large language models (LLMs)
LoRAPrune is a new framework that delivers an accurate structured pruned model in a highly memory-efficient manner.
LoRAPrune achieves a reduction in perplexity by 4.81 on WikiText2 and 3.46 on PTB, while also decreasing memory usage by 52.6%.
arXiv Detail & Related papers (2023-05-28T15:15:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.