Legal Assist AI: Leveraging Transformer-Based Model for Effective Legal Assistance
- URL: http://arxiv.org/abs/2505.22003v1
- Date: Wed, 28 May 2025 06:06:53 GMT
- Title: Legal Assist AI: Leveraging Transformer-Based Model for Effective Legal Assistance
- Authors: Jatin Gupta, Akhil Sharma, Saransh Singhania, Ali Imam Abidi,
- Abstract summary: Many citizens in India struggle to leverage their legal rights due to limited awareness and access to relevant legal information.<n>This paper introduces Legal Assist AI, a transformer-based model designed to bridge this gap by offering effective legal assistance through large language models (LLMs)<n>The model was evaluated against state-of-the-art models such as GPT-3.5 Turbo and Mistral 7B, achieving a 60.08% score on the AIBE.
- Score: 0.18749305679160366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pursuit of accessible legal assistance in India faces a critical gap, as many citizens struggle to leverage their legal rights due to limited awareness and access to relevant legal information. This paper introduces Legal Assist AI, a transformer-based model designed to bridge this gap by offering effective legal assistance through large language models (LLMs). The system retrieves relevant legal information from a curated database and generates accurate responses, enabling effective assistance for diverse users, including legal professionals, scholars, and the general public. The model was fine-tuned on extensive datasets from the Indian legal domain, including Indian Constitution, Bharatiya Nyaya Sanhita (BNS), Bharatiya Nagarik Suraksha Sanhita (BNSS) and so forth, providing a robust understanding of the complexities of Indian law. By incorporating domain-specific legal datasets, the proposed model demonstrated remarkable efficiency and specialization in legal Question-Answering. The model was evaluated against state-of-the-art models such as GPT-3.5 Turbo and Mistral 7B, achieving a 60.08% score on the AIBE, outperforming its competitors in legal reasoning and accuracy. Unlike other models, Legal Assist AI avoided common issues such as hallucinations, making it highly reliable for practical legal applications. It showcases the model's applicability in real-world legal scenarios, with future iterations aiming to enhance performance and expand its dataset to cover a broader range of multilingual and case-specific queries as well.
Related papers
- AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLaw is a first-of-its-kind dataset of 471 meticulously annotated U.S. Appeals Court negligence cases.<n>Our dataset lays the groundwork for more human-aligned, explainable Legal Judgment Prediction models.<n>Results demonstrate that LJP remains a formidable task, with application of legal precedent proving particularly difficult.
arXiv Detail & Related papers (2025-02-28T19:14:48Z) - LawPal : A Retrieval Augmented Generation Based System for Enhanced Legal Accessibility in India [0.0]
Access to legal knowledge in India is often hindered by a lack of awareness, misinformation and limited accessibility to judicial resources.<n>We propose a Retrieval-Augmented Generation (RAG)-based legal chatbots powered by vectorstore oriented FAISS.<n>Our model is trained using an extensive dataset comprising legal books, official documentation and the Indian Constitution.
arXiv Detail & Related papers (2025-02-23T13:45:47Z) - NyayaAnumana & INLegalLlama: The Largest Indian Legal Judgment Prediction Dataset and Specialized Language Model for Enhanced Decision Analysis [5.790242888372048]
This paper introduces NyayaAnumana, the largest and most diverse corpus of Indian legal cases compiled for legal judgment prediction (LJP)<n>NyayaAnumana includes a wide range of cases from the Supreme Court, High Courts, Tribunal Courts, District Courts, and Daily Orders.<n>In addition to the dataset, we present INLegalLlama, a domain-specific generative large language model (LLM) tailored to the intricacies of the Indian legal system.
arXiv Detail & Related papers (2024-12-11T13:50:17Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - LawGPT: A Chinese Legal Knowledge-Enhanced Large Language Model [44.71845500433037]
We introduce LawGPT, the first open-source model specifically designed for Chinese legal applications.
LawGPT comprises two key components: legal-oriented pre-training and legal supervised fine-tuning.
Our experimental results demonstrate that LawGPT outperforms the open-source LLaMA 7B model.
arXiv Detail & Related papers (2024-06-07T03:52:56Z) - SLJP: Semantic Extraction based Legal Judgment Prediction [0.0]
Legal Judgment Prediction (LJP) is a judicial assistance system that recommends the legal components such as applicable statues, prison term and penalty term.
Most of the existing Indian models did not adequately concentrate on the semantics embedded in the fact description (FD) that impacts the decision.
The proposed semantic extraction based LJP (SLJP) model provides the advantages of pretrained transformers for complex unstructured legal case document understanding.
arXiv Detail & Related papers (2023-12-13T08:50:02Z) - Legal Question-Answering in the Indian Context: Efficacy, Challenges,
and Potential of Modern AI Models [3.552993426200889]
Legal QA platforms bear the promise to metamorphose the manner in which legal experts engage with jurisprudential documents.
Our discourse zeroes in on an array of retrieval and QA mechanisms, positioning the OpenAI GPT model as a reference point.
The ambit of this study is tethered to the Indian criminal legal landscape, distinguished by its intricate nature and associated logistical constraints.
arXiv Detail & Related papers (2023-09-26T07:56:55Z) - Chatlaw: A Multi-Agent Collaborative Legal Assistant with Knowledge Graph Enhanced Mixture-of-Experts Large Language Model [30.30848216845138]
Chatlaw is an innovative legal assistant utilizing a Mixture-of-Experts (MoE) model and a multi-agent system.
By integrating knowledge graphs with artificial screening, we construct a high-quality legal dataset to train the MoE model.
Our MoE model outperforms GPT-4 in the Lawbench and Unified Exam Qualification for Legal Professionals by 7.73% in accuracy and 11 points, respectively.
arXiv Detail & Related papers (2023-06-28T10:48:34Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain.
This paper introduces the history, the current state, and the future directions of research in LegalAI.
arXiv Detail & Related papers (2020-04-25T14:45:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.