Inclusive, Differentially Private Federated Learning for Clinical Data
- URL: http://arxiv.org/abs/2505.22108v2
- Date: Thu, 05 Jun 2025 09:01:10 GMT
- Title: Inclusive, Differentially Private Federated Learning for Clinical Data
- Authors: Santhosh Parampottupadam, Melih Coşğun, Sarthak Pati, Maximilian Zenk, Saikat Roy, Dimitrios Bounias, Benjamin Hamm, Sinem Sav, Ralf Floca, Klaus Maier-Hein,
- Abstract summary: Federated Learning (FL) offers a promising approach for training clinical AI models without centralizing sensitive patient data.<n>Its real-world adoption is hindered by challenges related to privacy, resource constraints, and compliance.<n>We propose a novel FL framework that enhances DP by adaptively adjusting noise based on quantifiable client compliance scores.
- Score: 0.45034038207097465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) offers a promising approach for training clinical AI models without centralizing sensitive patient data. However, its real-world adoption is hindered by challenges related to privacy, resource constraints, and compliance. Existing Differential Privacy (DP) approaches often apply uniform noise, which disproportionately degrades model performance, even among well-compliant institutions. In this work, we propose a novel compliance-aware FL framework that enhances DP by adaptively adjusting noise based on quantifiable client compliance scores. Additionally, we introduce a compliance scoring tool based on key healthcare and security standards to promote secure, inclusive, and equitable participation across diverse clinical settings. Extensive experiments on public datasets demonstrate that integrating under-resourced, less compliant clinics with highly regulated institutions yields accuracy improvements of up to 15% over traditional FL. This work advances FL by balancing privacy, compliance, and performance, making it a viable solution for real-world clinical workflows in global healthcare.
Related papers
- Blockchain-Enabled Privacy-Preserving Second-Order Federated Edge Learning in Personalized Healthcare [1.859970493489417]
Federated learning (FL) has attracted increasing attention to security and privacy challenges in traditional cloud-centric machine learning models.<n>First-order FL approaches face several challenges in personalized model training due to heterogeneous non-independent and identically distributed (non-iid) data.<n>Recently, second-order FL approaches maintain the stability and consistency of non-iid datasets while improving personalized model training.
arXiv Detail & Related papers (2025-05-31T06:41:04Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - FedMetaMed: Federated Meta-Learning for Personalized Medication in Distributed Healthcare Systems [7.32609591220333]
We introduce Federated Meta-Learning for Personalized Medication (FedMetaMed)<n>FedMetaMed combines federated learning and meta-learning to create models that adapt to diverse patient data across healthcare systems.<n>We show that FedMetaMed outperforms state-of-the-art FL methods, showing superior generalization even on out-of-the-art cohorts.
arXiv Detail & Related papers (2024-12-05T03:36:55Z) - Differentially Private Distributed Inference [2.4401219403555814]
Healthcare centers collaborating on clinical trials must balance knowledge sharing with safeguarding sensitive patient data.<n>We address this challenge by using differential privacy (DP) to control information leakage.<n>Agents update belief statistics via log-linear rules, and DP noise provides plausible deniability and rigorous performance guarantees.
arXiv Detail & Related papers (2024-02-13T01:38:01Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Improving Fairness in AI Models on Electronic Health Records: The Case
for Federated Learning Methods [0.0]
We show one possible approach to mitigate bias concerns by having healthcare institutions collaborate through a federated learning paradigm.
We propose a comprehensive FL approach with adversarial debiasing and a fair aggregation method, suitable to various fairness metrics.
Our method has achieved promising fairness performance with the lowest impact on overall discrimination performance (accuracy)
arXiv Detail & Related papers (2023-05-19T02:03:49Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Federated Uncertainty-Aware Aggregation for Fundus Diabetic Retinopathy
Staging [42.883182872565044]
We propose a novel federated uncertainty-aware aggregation paradigm (FedUAA) for training diabetic retinopathy (DR) staging models.
FedUAA considers the reliability of each client and produces a confidence estimation for the DR staging.
Our experimental results demonstrate that our FedUAA achieves better DR staging performance with higher reliability compared to other federated learning methods.
arXiv Detail & Related papers (2023-03-23T04:41:44Z) - Federated Learning with Adaptive Batchnorm for Personalized Healthcare [47.52430258876696]
We propose AdaFed to tackle domain shifts and obtain personalized models for local clients.
AdaFed learns the similarity between clients via the statistics of the batch normalization layers.
Experiments on five healthcare benchmarks demonstrate that AdaFed achieves better accuracy compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-01T11:36:56Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
Collaborative machine learning techniques such as federated learning (FL) enable the training of models on effectively larger datasets without data transfer.
Recent initiatives have demonstrated that segmentation models trained with FL can achieve performance similar to locally trained models.
However, FL is not a fully privacy-preserving technique and privacy-centred attacks can disclose confidential patient data.
arXiv Detail & Related papers (2021-07-06T12:57:32Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.