S2AFormer: Strip Self-Attention for Efficient Vision Transformer
- URL: http://arxiv.org/abs/2505.22195v1
- Date: Wed, 28 May 2025 10:17:23 GMT
- Title: S2AFormer: Strip Self-Attention for Efficient Vision Transformer
- Authors: Guoan Xu, Wenfeng Huang, Wenjing Jia, Jiamao Li, Guangwei Gao, Guo-Jun Qi,
- Abstract summary: Vision Transformer (ViT) has made significant advancements in computer vision.<n>Recent methods have combined the strengths of convolutions and self-attention to achieve better trade-offs.<n>We propose S2AFormer, an efficient Vision Transformer architecture featuring novel Strip Self-Attention (SSA)
- Score: 37.930090368513355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision Transformer (ViT) has made significant advancements in computer vision, thanks to its token mixer's sophisticated ability to capture global dependencies between all tokens. However, the quadratic growth in computational demands as the number of tokens increases limits its practical efficiency. Although recent methods have combined the strengths of convolutions and self-attention to achieve better trade-offs, the expensive pairwise token affinity and complex matrix operations inherent in self-attention remain a bottleneck. To address this challenge, we propose S2AFormer, an efficient Vision Transformer architecture featuring novel Strip Self-Attention (SSA). We design simple yet effective Hybrid Perception Blocks (HPBs) to effectively integrate the local perception capabilities of CNNs with the global context modeling of Transformer's attention mechanisms. A key innovation of SSA lies in its reducing the spatial dimensions of $K$ and $V$ while compressing the channel dimensions of $Q$ and $K$. This design significantly reduces computational overhead while preserving accuracy, striking an optimal balance between efficiency and effectiveness. We evaluate the robustness and efficiency of S2AFormer through extensive experiments on multiple vision benchmarks, including ImageNet-1k for image classification, ADE20k for semantic segmentation, and COCO for object detection and instance segmentation. Results demonstrate that S2AFormer achieves significant accuracy gains with superior efficiency in both GPU and non-GPU environments, making it a strong candidate for efficient vision Transformers.
Related papers
- SAC-ViT: Semantic-Aware Clustering Vision Transformer with Early Exit [6.87425726793675]
Vision Transformer (ViT) excels in global modeling but faces deployment challenges on resource-constrained devices.<n>We propose the Semantic-Aware Clustering Vision Transformer (SAC-ViT) to enhance ViT's computational efficiency.
arXiv Detail & Related papers (2025-02-27T02:24:22Z) - ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
Convolutional methods, although capturing local dependencies well, struggle with long-range relationships.<n>Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands.<n>We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
arXiv Detail & Related papers (2025-01-31T16:11:04Z) - big.LITTLE Vision Transformer for Efficient Visual Recognition [34.015778625984055]
big.LITTLE Vision Transformer is an innovative architecture aimed at achieving efficient visual recognition.
System is composed of two distinct blocks: the big performance block and the LITTLE efficiency block.
When processing an image, our system determines the importance of each token and allocates them accordingly.
arXiv Detail & Related papers (2024-10-14T08:21:00Z) - CAS-ViT: Convolutional Additive Self-attention Vision Transformers for Efficient Mobile Applications [73.80247057590519]
Vision Transformers (ViTs) mark a revolutionary advance in neural networks with their token mixer's powerful global context capability.<n>We introduce CAS-ViT: Convolutional Additive Self-attention Vision Transformers, to achieve a balance between efficiency and performance in mobile applications.<n>Our model achieves 83.0%/84.1% top-1 with only 12M/21M parameters on ImageNet-1K.
arXiv Detail & Related papers (2024-08-07T11:33:46Z) - EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba [19.062950348441426]
This work proposes to explore the potential of visual state space models in light-weight model design and introduce a novel efficient model variant dubbed EfficientVMamba.
Our EfficientVMamba integrates a atrous-based selective scan approach by efficient skip sampling, constituting building blocks designed to harness both global and local representational features.
Experimental results show that, EfficientVMamba scales down the computational complexity while yields competitive results across a variety of vision tasks.
arXiv Detail & Related papers (2024-03-15T02:48:47Z) - CageViT: Convolutional Activation Guided Efficient Vision Transformer [90.69578999760206]
This paper presents an efficient vision Transformer, called CageViT, that is guided by convolutional activation to reduce computation.
Our CageViT, unlike current Transformers, utilizes a new encoder to handle the rearranged tokens.
Experimental results demonstrate that the proposed CageViT outperforms the most recent state-of-the-art backbones by a large margin in terms of efficiency.
arXiv Detail & Related papers (2023-05-17T03:19:18Z) - Iwin: Human-Object Interaction Detection via Transformer with Irregular
Windows [57.00864538284686]
Iwin Transformer is a hierarchical Transformer which progressively performs token representation learning and token agglomeration within irregular windows.
The effectiveness and efficiency of Iwin Transformer are verified on the two standard HOI detection benchmark datasets.
arXiv Detail & Related papers (2022-03-20T12:04:50Z) - Shunted Self-Attention via Multi-Scale Token Aggregation [124.16925784748601]
Recent Vision Transformer(ViT) models have demonstrated encouraging results across various computer vision tasks.
We propose shunted self-attention(SSA) that allows ViTs to model the attentions at hybrid scales per attention layer.
The SSA-based transformer achieves 84.0% Top-1 accuracy and outperforms the state-of-the-art Focal Transformer on ImageNet.
arXiv Detail & Related papers (2021-11-30T08:08:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.