LaMM: Semi-Supervised Pre-Training of Large-Scale Materials Models
- URL: http://arxiv.org/abs/2505.22208v1
- Date: Wed, 28 May 2025 10:36:49 GMT
- Title: LaMM: Semi-Supervised Pre-Training of Large-Scale Materials Models
- Authors: Yosuke Oyama, Yusuke Majima, Eiji Ohta, Yasufumi Sakai,
- Abstract summary: We propose LaMM, a semi-supervised pre-training method incorporating improved denoising self-supervised learning and a load-balancing algorithm for efficient multi-node training.<n>We demonstrate that our approach effectively leverages a large-scale dataset of $sim$300 million semi-labeled samples to train a single NNP model, resulting in improved fine-tuning performance in terms of both speed and accuracy.
- Score: 0.1999925939110439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network potentials (NNPs) are crucial for accelerating computational materials science by surrogating density functional theory (DFT) calculations. Improving their accuracy is possible through pre-training and fine-tuning, where an NNP model is first pre-trained on a large-scale dataset and then fine-tuned on a smaller target dataset. However, this approach is computationally expensive, mainly due to the cost of DFT-based dataset labeling and load imbalances during large-scale pre-training. To address this, we propose LaMM, a semi-supervised pre-training method incorporating improved denoising self-supervised learning and a load-balancing algorithm for efficient multi-node training. We demonstrate that our approach effectively leverages a large-scale dataset of $\sim$300 million semi-labeled samples to train a single NNP model, resulting in improved fine-tuning performance in terms of both speed and accuracy.
Related papers
- Prior-Fitted Networks Scale to Larger Datasets When Treated as Weak Learners [82.72552644267724]
BoostPFN can outperform standard PFNs with the same size of training samples in large datasets.<n>High performance is maintained for up to 50x of the pre-training size of PFNs.
arXiv Detail & Related papers (2025-03-03T07:31:40Z) - Pre-training Graph Neural Networks with Structural Fingerprints for Materials Discovery [1.187456026346823]
We propose a novel pre-training objective which uses cheaply-computed structural fingerprints as targets.<n>Our experiments show this approach can act as a general strategy for pre-training GNNs with application towards large scale foundational models for atomistic data.
arXiv Detail & Related papers (2025-03-03T06:50:23Z) - Towards Data-Efficient Pretraining for Atomic Property Prediction [51.660835328611626]
We show that pretraining on a task-relevant dataset can match or surpass large-scale pretraining.<n>We introduce the Chemical Similarity Index (CSI), a novel metric inspired by computer vision's Fr'echet Inception Distance.
arXiv Detail & Related papers (2025-02-16T11:46:23Z) - The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
We present the first systematic exploration of optimal sparse pre-training configurations for large language models.<n>We find that initiating pruning at 25% of total training compute and concluding at 75% achieves near-optimal final evaluation loss.<n>We propose a new scaling law that modifies the Chinchilla scaling law to use the average parameter count over pre-training.
arXiv Detail & Related papers (2025-01-21T20:23:22Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.<n>As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - AutoScale: Scale-Aware Data Mixing for Pre-Training LLMs [61.13296177652599]
We show that data mixtures that perform well at smaller scales may not retain their advantage at larger scales.<n>We propose AutoScale, a two-stage, scale-aware data composition framework.
arXiv Detail & Related papers (2024-07-29T17:06:30Z) - Efficient N:M Sparse DNN Training Using Algorithm, Architecture, and
Dataflow Co-Design [15.47240906902083]
This paper presents a computation-efficient training scheme for N:M sparse DNNs using algorithm, architecture, and dataflow co-design.
At the algorithm level, a bidirectional weight pruning method, dubbed BDWP, is proposed to leverage the N:M sparsity of weights.
At the architecture level, a sparse accelerator for DNN training, namely SAT, is developed to support both the regular dense operations and the computation-efficient N:M sparse operations.
arXiv Detail & Related papers (2023-09-22T17:26:19Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
We show the benefits of using unstructured weight sparsity to train only a subset of weights during pre-training.
We demonstrate that we can induce up to 75% sparsity into a 1.3B parameter GPT-3 XL model resulting in a 2.5x reduction in pre-training FLOPs.
arXiv Detail & Related papers (2023-03-18T17:56:01Z) - Knowledge Distillation as Efficient Pre-training: Faster Convergence,
Higher Data-efficiency, and Better Transferability [53.27240222619834]
Knowledge Distillation as Efficient Pre-training aims to efficiently transfer the learned feature representation from pre-trained models to new student models for future downstream tasks.
Our method performs comparably with supervised pre-training counterparts in 3 downstream tasks and 9 downstream datasets requiring 10x less data and 5x less pre-training time.
arXiv Detail & Related papers (2022-03-10T06:23:41Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
In this study, we evaluate the performance of NLLS, the RNN-based method and a multilayer perceptron (MLP) on datasets rat and human brain.
We showed that the proposed RNN-based fitting approach had the advantage of highly reduced computation time over NLLS.
arXiv Detail & Related papers (2022-03-01T16:33:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.