Transformers Pretrained on Procedural Data Contain Modular Structures for Algorithmic Reasoning
- URL: http://arxiv.org/abs/2505.22308v1
- Date: Wed, 28 May 2025 12:50:09 GMT
- Title: Transformers Pretrained on Procedural Data Contain Modular Structures for Algorithmic Reasoning
- Authors: Zachary Shinnick, Liangze Jiang, Hemanth Saratchandran, Anton van den Hengel, Damien Teney,
- Abstract summary: We identify several beneficial forms of procedural data, together with specific algorithmic reasoning skills that improve in small transformers.<n>Our core finding is that different procedural rules instil distinct but complementary inductive structures in the model.<n>Most interestingly, the structures induced by multiple rules can be composed to jointly impart multiple capabilities.
- Score: 40.84344912259233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretraining on large, semantically rich datasets is key for developing language models. Surprisingly, recent studies have shown that even synthetic data, generated procedurally through simple semantic-free algorithms, can yield some of the same benefits as natural language pretraining. It is unclear what specific capabilities such simple synthetic data instils in a model, where these capabilities reside in the architecture, and how they manifest within its weights. In this short paper, we identify several beneficial forms of procedural data, together with specific algorithmic reasoning skills that improve in small transformers. Our core finding is that different procedural rules instil distinct but complementary inductive structures in the model. With extensive ablations and partial-transfer experiments, we discover that these structures reside in different parts of the model. Attention layers often carry the most transferable information, but some pretraining rules impart useful structure to MLP blocks instead. Most interestingly, the structures induced by multiple rules can be composed to jointly reinforce multiple capabilities. These results suggest an exciting possibility of disentangling the acquisition of knowledge from reasoning in language models, with the goal of improving their robustness and data efficiency.
Related papers
- Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures [49.19753720526998]
We derive theoretical scaling laws for neural network performance on synthetic datasets.<n>We validate that convolutional networks, whose structure aligns with that of the generative process through locality and weight sharing, enjoy a faster scaling of performance.<n>This finding clarifies the architectural biases underlying neural scaling laws and highlights how representation learning is shaped by the interaction between model architecture and the statistical properties of data.
arXiv Detail & Related papers (2025-05-11T17:44:14Z) - From Text to Graph: Leveraging Graph Neural Networks for Enhanced Explainability in NLP [3.864700176441583]
This study proposes a novel methodology to achieve explainability in natural language processing tasks.<n>It automatically converts sentences into graphs and maintains semantics through nodes and relations.<n>Experiments delivered promising results in determining the most critical components within the text structure for a given classification.
arXiv Detail & Related papers (2025-04-02T18:55:58Z) - In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
We study ICL through the lens of a new family of model problems we term in context language learning (ICLL)
We evaluate a diverse set of neural sequence models on regular ICLL tasks.
arXiv Detail & Related papers (2024-01-23T18:59:21Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
Transformer-based language models are effective but complex, and understanding their inner workings and reasoning mechanisms is a significant challenge.<n>We introduce a family of synthetic CFGs that produce hierarchical rules, capable of generating lengthy sentences.<n>We demonstrate that generative models like GPT can accurately learn and reason over CFG-defined hierarchies and generate sentences based on it.
arXiv Detail & Related papers (2023-05-23T04:28:16Z) - Discrete Latent Structure in Neural Networks [32.41642110537956]
This text explores three broad strategies for learning with discrete latent structure.
We show how most consist of the same small set of fundamental building blocks, but use them differently, leading to substantially different applicability and properties.
arXiv Detail & Related papers (2023-01-18T12:30:44Z) - Structural Biases for Improving Transformers on Translation into
Morphologically Rich Languages [120.74406230847904]
TP-Transformer augments the traditional Transformer architecture to include an additional component to represent structure.
The second method imbues structure at the data level by segmenting the data with morphological tokenization.
We find that each of these two approaches allows the network to achieve better performance, but this improvement is dependent on the size of the dataset.
arXiv Detail & Related papers (2022-08-11T22:42:24Z) - TAGPRIME: A Unified Framework for Relational Structure Extraction [71.88926365652034]
TAGPRIME is a sequence tagging model that appends priming words about the information of the given condition to the input text.
With the self-attention mechanism in pre-trained language models, the priming words make the output contextualized representations contain more information about the given condition.
Extensive experiments and analyses on three different tasks that cover ten datasets across five different languages demonstrate the generality and effectiveness of TAGPRIME.
arXiv Detail & Related papers (2022-05-25T08:57:46Z) - Transformer Grammars: Augmenting Transformer Language Models with
Syntactic Inductive Biases at Scale [31.293175512404172]
We introduce Transformer Grammars -- a class of Transformer language models that combine expressive power, scalability, and strong performance of Transformers.
We find that Transformer Grammars outperform various strong baselines on multiple syntax-sensitive language modeling evaluation metrics.
arXiv Detail & Related papers (2022-03-01T17:22:31Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
We demonstrate a set of modifications to the structure of a Transformer layer, producing a more efficient architecture.
We add a convolutional module to complement the self-attention module, decoupling the learning of local and global interactions.
We apply the resulting architecture to language representation learning and demonstrate its superior performance compared to BERT models of different scales.
arXiv Detail & Related papers (2021-06-10T15:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.