Unsupervised Post-Training for Multi-Modal LLM Reasoning via GRPO
- URL: http://arxiv.org/abs/2505.22453v1
- Date: Wed, 28 May 2025 15:11:16 GMT
- Title: Unsupervised Post-Training for Multi-Modal LLM Reasoning via GRPO
- Authors: Lai Wei, Yuting Li, Chen Wang, Yue Wang, Linghe Kong, Weiran Huang, Lichao Sun,
- Abstract summary: We propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs.<n> MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses.<n>Our experiments demonstrate that MM-UPT significantly improves the reasoning ability of Qwen2.5-VL-7B.
- Score: 25.288796606275973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). However, these supervised methods require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. While recent efforts have explored unsupervised post-training, their methods are complex and difficult to iterate. In this work, we are the first to investigate the use of GRPO, a stable and scalable online RL algorithm, for enabling continual self-improvement without any external supervision. We propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs. MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that MM-UPT significantly improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3 %$\rightarrow$72.9 % on MathVista, 62.9 %$\rightarrow$68.7 % on We-Math), using standard dataset without ground truth labels. MM-UPT also outperforms prior unsupervised baselines and even approaches the results of supervised GRPO. Furthermore, we show that incorporating synthetic questions, generated solely by MLLM itself, can boost performance as well, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for continual, autonomous enhancement of MLLMs in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Small LLMs Do Not Learn a Generalizable Theory of Mind via Reinforcement Learning [1.6114012813668932]
Small language models (LLMs) struggle to develop a generic Theory of Mind (ToM) capability.<n> prolonged RL training leads to models hacking'' the statistical patterns of the training datasets.<n>This suggests the learned behavior is a form of narrow overfitting rather than the acquisition of a true, abstract ToM capability.
arXiv Detail & Related papers (2025-07-21T16:47:59Z) - High-Resolution Visual Reasoning via Multi-Turn Grounding-Based Reinforcement Learning [43.8114307203968]
State-of-the-art large multi-modal models (LMMs) face challenges when processing high-resolution images.<n>In this paper, we propose Multi-turn Grounding-based Policy Optimization (MGPO)<n>MGPO enables LMMs to iteratively focus on key visual regions by automatically cropping sub-images.
arXiv Detail & Related papers (2025-07-08T12:05:05Z) - How to Train Your LLM Web Agent: A Statistical Diagnosis [102.04125085041473]
We present the first statistically grounded study on compute allocation for LLM web-agent post-training.<n>Our approach uses a two-stage pipeline, training a Llama 3.1 8B student to imitate a Llama 3.3 70B teacher via supervised fine-tuning (SFT) and on-policy reinforcement learning.<n>Our results show that combining SFT with on-policy RL consistently outperforms either approach alone on both WorkArena and MiniWob++.
arXiv Detail & Related papers (2025-07-05T17:12:33Z) - Heterogeneous Group-Based Reinforcement Learning for LLM-based Multi-Agent Systems [25.882461853973897]
We propose Multi-Agent Heterogeneous Group Policy Optimization (MHGPO), which guides policy updates by estimating relative reward advantages.<n>MHGPO eliminates the need for Critic networks, enhancing stability and reducing computational overhead.<n>We also introduce three group rollout sampling strategies that trade off between efficiency and effectiveness.
arXiv Detail & Related papers (2025-06-03T10:17:19Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [89.50068130832635]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation MLLMs by multimodal knowledge.<n>We propose Chain-of-Description for step-by-step visual understanding and integrate structured Chain-of-Thought (CoT) reasoning to support in-depth multimodal reasoning.<n>Experiments demonstrate SIcog's effectiveness in developing MLLMs with enhanced multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - MM-Eureka: Exploring the Frontiers of Multimodal Reasoning with Rule-based Reinforcement Learning [55.82649731348012]
We introduce the MMK12 dataset and MM-EUREKA with 7B and 32B parameters.<n>The former is a high-quality multimodal mathematics reasoning dataset featuring diverse knowledge domains with human-verified answers and solution processes.<n>The latter is a multimodal model employing rule-based reinforcement learning utilizing online filtering and two-stage training strategy to enhance training stability.
arXiv Detail & Related papers (2025-03-10T14:23:12Z) - Large Language Model-Enhanced Multi-Armed Bandits [43.34246396804588]
Large language models (LLMs) have been adopted to solve sequential decision-making tasks such as multi-armed bandits (MAB)<n>We propose an alternative approach which combines the strengths of classical MAB and LLMs.<n>We conduct empirical evaluations using both synthetic MAB tasks and experiments designed using real-world text datasets.
arXiv Detail & Related papers (2025-02-03T07:19:05Z) - URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics [23.80647785460245]
Process Reward Models (PRMs) have shown promise in enhancing the mathematical reasoning capabilities of Large Language Models.<n>We take the first step toward unlocking the potential of PRMs in multimodal mathematical reasoning.<n>We introduce URSA, a three-stage Unfolding multimodal Process-Supervision Aided training framework.
arXiv Detail & Related papers (2025-01-08T18:49:41Z) - 7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement [42.10844666788254]
Moxin 7B is a fully open-source Large Language Models (LLMs) developed adhering to principles of open science, open source, open data, and open access.<n>We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints.<n> Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
arXiv Detail & Related papers (2024-12-08T02:01:46Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT (Multi-Agent LLM Training) is a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps.<n>On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps.
We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution.
We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures.
arXiv Detail & Related papers (2024-11-06T22:02:30Z) - Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training [48.455597568212944]
We present Mono-InternVL, a novel monolithic MLLM that seamlessly integrates a set of visual experts via a multimodal mixture-of-experts structure.<n>In particular, EViP is designed as a progressive learning process for visual experts, which aims to fully exploit the visual knowledge from noisy data to high-quality data.
arXiv Detail & Related papers (2024-10-10T17:59:22Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.