Test-Time Alignment of Discrete Diffusion Models with Sequential Monte Carlo
- URL: http://arxiv.org/abs/2505.22524v1
- Date: Wed, 28 May 2025 16:12:03 GMT
- Title: Test-Time Alignment of Discrete Diffusion Models with Sequential Monte Carlo
- Authors: Chinmay Pani, Zijing Ou, Yingzhen Li,
- Abstract summary: We propose a training-free method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution at the test time.<n>Our approach leverages twisted SMC with an approximate locally optimal proposal, obtained via a first-order Taylor expansion of the reward function.<n>To address the challenge of ill-defined gradients in discrete spaces, we incorporate a Gumbel-Softmax relaxation, enabling efficient gradient-based approximation within the discrete generative framework.
- Score: 19.81513273510523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete diffusion models have become highly effective across various domains. However, real-world applications often require the generative process to adhere to certain constraints but without task-specific fine-tuning. To this end, we propose a training-free method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution at the test time. Our approach leverages twisted SMC with an approximate locally optimal proposal, obtained via a first-order Taylor expansion of the reward function. To address the challenge of ill-defined gradients in discrete spaces, we incorporate a Gumbel-Softmax relaxation, enabling efficient gradient-based approximation within the discrete generative framework. Empirical results on both synthetic datasets and image modelling validate the effectiveness of our approach.
Related papers
- Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities [0.0]
Generalized Hamiltonian Monte Carlo processes for sampling continuous densities with discontinuous gradient and piecewise smooth targets are proposed.<n>It is argued that the techniques lead to GRHMC processes that admit the desired target distribution as the invariant distribution in both scenarios.
arXiv Detail & Related papers (2025-04-25T09:41:57Z) - Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
We provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models.<n>We propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality.
arXiv Detail & Related papers (2025-03-04T17:46:51Z) - Scalable Discrete Diffusion Samplers: Combinatorial Optimization and Statistical Physics [7.873510219469276]
We introduce two novel training methods for discrete diffusion samplers.<n>These methods yield memory-efficient training and achieve state-of-the-art results in unsupervised optimization.<n>We introduce adaptations of SN-NIS and Neural Chain Monte Carlo that enable for the first time the application of discrete diffusion models to this problem.
arXiv Detail & Related papers (2025-02-12T18:59:55Z) - Test-time Alignment of Diffusion Models without Reward Over-optimization [8.981605934618349]
Diffusion models excel in generative tasks, but aligning them with specific objectives remains challenging.<n>We propose a training-free, test-time method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution.<n>We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization.
arXiv Detail & Related papers (2025-01-10T09:10:30Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers.<n>We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.<n>This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
We propose an optimization approach, dubbed Demon, to guide the denoising process at inference time without backpropagation through reward functions or model retraining.<n>Our approach works by controlling noise distribution in denoising steps to concentrate density on regions corresponding to high rewards through optimization.<n>Our experiments show that the proposed approach significantly improves the average aesthetics scores text-to-image generation.
arXiv Detail & Related papers (2024-10-08T07:33:49Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
We introduce an algorithm leveraging the uniformization of continuous Markov chains, implementing transitions on random time points.
Our results align with state-of-the-art achievements for diffusion models in $mathbbRd$ and further underscore the advantages of discrete diffusion models in comparison to the $mathbbRd$ setting.
arXiv Detail & Related papers (2024-02-12T22:26:52Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
We develop an algorithm for automatic differentiation of Metropolis-Hastings samplers.
We apply gradient-based optimization to objectives expressed as expectations over intractable target densities.
arXiv Detail & Related papers (2023-06-13T17:56:02Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.