Symplectic Generative Networks (SGNs): A Hamiltonian Framework for Invertible Deep Generative Modeling
- URL: http://arxiv.org/abs/2505.22527v1
- Date: Wed, 28 May 2025 16:13:36 GMT
- Title: Symplectic Generative Networks (SGNs): A Hamiltonian Framework for Invertible Deep Generative Modeling
- Authors: Agnideep Aich, Ashit Aich, Bruce Wade,
- Abstract summary: We introduce the Symplectic Generative Network (SGN), a deep generative model that leverages Hamiltonian mechanics to construct an invertible, volume-preserving mapping between a latent space and the data space.<n>By endowing the latent space with a symplectic structure and modeling data generation as the time evolution of a Hamiltonian system, SGN achieves exact likelihood evaluation without incurring the computational overhead of Jacobian calculations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the Symplectic Generative Network (SGN), a deep generative model that leverages Hamiltonian mechanics to construct an invertible, volume-preserving mapping between a latent space and the data space. By endowing the latent space with a symplectic structure and modeling data generation as the time evolution of a Hamiltonian system, SGN achieves exact likelihood evaluation without incurring the computational overhead of Jacobian determinant calculations. In this work, we provide a rigorous mathematical foundation for SGNs through a comprehensive theoretical framework that includes: (i) complete proofs of invertibility and volume preservation, (ii) a formal complexity analysis with theoretical comparisons to Variational Autoencoders and Normalizing Flows, (iii) strengthened universal approximation results with quantitative error bounds, (iv) an information-theoretic analysis based on the geometry of statistical manifolds, and (v) an extensive stability analysis with adaptive integration guarantees. These contributions highlight the fundamental advantages of SGNs and establish a solid foundation for future empirical investigations and applications to complex, high-dimensional data.
Related papers
- Mutual Information Free Topological Generalization Bounds via Stability [46.63069403118614]
We introduce a novel learning theoretic framework that departs from the existing strategies.<n>We prove that the generalization error of trajectory-stable algorithms can be upper bounded in terms of TDA terms.
arXiv Detail & Related papers (2025-07-09T12:03:25Z) - Information-theoretic Quantification of High-order Feature Effects in Classification Problems [0.19791587637442676]
We present an information-theoretic extension of the High-order interactions for Feature importance (Hi-Fi) method.<n>Our framework decomposes feature contributions into unique, synergistic, and redundant components.<n>Results indicate that the proposed estimator accurately recovers theoretical and expected findings.
arXiv Detail & Related papers (2025-07-06T11:50:30Z) - Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices [6.7523635840772505]
Circular and non-flat data distributions are prevalent across diverse domains of data science.<n>A principled approach to accounting for the underlying geometry of such data is pivotal.<n>This work lays the groundwork for extending classical machine learning and statistical methods to more complex and structured data.
arXiv Detail & Related papers (2025-02-03T16:46:46Z) - Gaussian Universality in Neural Network Dynamics with Generalized Structured Input Distributions [2.3020018305241337]
We analyze the behavior of a deep learning system trained on inputs modeled as Gaussian mixtures to better simulate more general structured inputs.<n>Under certain standardization schemes, the deep learning model converges toward Gaussian setting behavior, even when the input data follow more complex or real-world distributions.
arXiv Detail & Related papers (2024-05-01T17:10:55Z) - Addressing Dynamic and Sparse Qualitative Data: A Hilbert Space
Embedding of Categorical Variables [0.26107298043931204]
We propose a novel framework for incorporating qualitative data into quantitative models for causal estimation.
We use functional analysis to create a more nuanced and flexible framework.
We validate our model through comprehensive simulation evidence and demonstrate its relevance in a real-world study.
arXiv Detail & Related papers (2023-08-22T20:40:31Z) - Robust Model-Based Optimization for Challenging Fitness Landscapes [96.63655543085258]
Protein design involves optimization on a fitness landscape.
Leading methods are challenged by sparsity of high-fitness samples in the training set.
We show that this problem of "separation" in the design space is a significant bottleneck in existing model-based optimization tools.
We propose a new approach that uses a novel VAE as its search model to overcome the problem.
arXiv Detail & Related papers (2023-05-23T03:47:32Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
We consider the problem of jointly benchmarking and clustering of tensors.
We propose an efficient high-maximization algorithm that converges geometrically to a neighborhood that is within statistical precision.
arXiv Detail & Related papers (2021-04-15T21:06:16Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
We introduce a new scalable approximation for Gaussian processes with provable guarantees which hold simultaneously over its entire parameter space.
Our approximation is obtained from an improved sample complexity analysis for sparse spectrum Gaussian processes (SSGPs)
arXiv Detail & Related papers (2020-11-17T05:41:50Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.