Do Large Language Models Think Like the Brain? Sentence-Level Evidence from fMRI and Hierarchical Embeddings
- URL: http://arxiv.org/abs/2505.22563v1
- Date: Wed, 28 May 2025 16:40:06 GMT
- Title: Do Large Language Models Think Like the Brain? Sentence-Level Evidence from fMRI and Hierarchical Embeddings
- Authors: Yu Lei, Xingyang Ge, Yi Zhang, Yiming Yang, Bolei Ma,
- Abstract summary: This study investigates how hierarchical representations in large language models align with the dynamic neural responses during human sentence comprehension.<n>Results show that improvements in model performance drive the evolution of representational architectures toward brain-like hierarchies.
- Score: 28.210559128941593
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Understanding whether large language models (LLMs) and the human brain converge on similar computational principles remains a fundamental and important question in cognitive neuroscience and AI. Do the brain-like patterns observed in LLMs emerge simply from scaling, or do they reflect deeper alignment with the architecture of human language processing? This study focuses on the sentence-level neural mechanisms of language models, systematically investigating how hierarchical representations in LLMs align with the dynamic neural responses during human sentence comprehension. By comparing hierarchical embeddings from 14 publicly available LLMs with fMRI data collected from participants, who were exposed to a naturalistic narrative story, we constructed sentence-level neural prediction models to precisely identify the model layers most significantly correlated with brain region activations. Results show that improvements in model performance drive the evolution of representational architectures toward brain-like hierarchies, particularly achieving stronger functional and anatomical correspondence at higher semantic abstraction levels.
Related papers
- Lilith: Developmental Modular LLMs with Chemical Signaling [49.1574468325115]
Current paradigms in Artificial Intelligence rely on layers of feedforward networks which model brain activity at the neuronal level.<n>We propose LILITH, a novel architecture that combines developmental training of modular language models with brain-inspired token-based communication protocols.
arXiv Detail & Related papers (2025-07-06T23:18:51Z) - Explanations of Large Language Models Explain Language Representations in the Brain [5.7916055414970895]
We propose a novel approach using explainable AI (XAI) to strengthen link between language processing and brain neural activity.<n>Applying attribution methods, we quantify the influence of preceding words on predictions.<n>We find stronger attributions suggest brain alignment for assessing the biological explanation methods.
arXiv Detail & Related papers (2025-02-20T16:05:45Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Generative causal testing to bridge data-driven models and scientific theories in language neuroscience [82.995061475971]
We present generative causal testing (GCT), a framework for generating concise explanations of language selectivity in the brain.<n>We show that GCT can dissect fine-grained differences between brain areas with similar functional selectivity.
arXiv Detail & Related papers (2024-10-01T15:57:48Z) - Analysis of Argument Structure Constructions in a Deep Recurrent Language Model [0.0]
We explore the representation and processing of Argument Structure Constructions (ASCs) in a recurrent neural language model.
Our results show that sentence representations form distinct clusters corresponding to the four ASCs across all hidden layers.
This indicates that even a relatively simple, brain-constrained recurrent neural network can effectively differentiate between various construction types.
arXiv Detail & Related papers (2024-08-06T09:27:41Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
Large Language Models (LLMs) have been shown to be effective models of the human language system.
In this work, we investigate the key architectural components driving the surprising alignment of untrained models.
arXiv Detail & Related papers (2024-06-21T12:54:03Z) - Contextual Feature Extraction Hierarchies Converge in Large Language
Models and the Brain [12.92793034617015]
We show that as large language models (LLMs) achieve higher performance on benchmark tasks, they become more brain-like.
We also show the importance of contextual information in improving model performance and brain similarity.
arXiv Detail & Related papers (2024-01-31T08:48:35Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
We capitalize on the progress of self-supervised speech representation learning to create new state-of-the-art models of the human auditory system.
We show that these results show that self-supervised models effectively capture the hierarchy of information relevant to different stages of speech processing in human cortex.
arXiv Detail & Related papers (2022-05-27T22:04:02Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.