SlimLLM: Accurate Structured Pruning for Large Language Models
- URL: http://arxiv.org/abs/2505.22689v1
- Date: Wed, 28 May 2025 03:01:28 GMT
- Title: SlimLLM: Accurate Structured Pruning for Large Language Models
- Authors: Jialong Guo, Xinghao Chen, Yehui Tang, Yunhe Wang,
- Abstract summary: structured pruning is an effective solution to compress the parameters of large language models.<n>We propose an effective and fast structured pruning method named SlimLLM for large language models.
- Score: 36.84275777364218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models(LLMs) have garnered significant attention and demonstrated impressive capabilities in a wide range of applications. However, due to their enormous computational costs, the deployment and application of LLMs are often severely limited. To address this issue, structured pruning is an effective solution to compress the parameters of LLMs. Determining the importance of each sub-module in LLMs and minimizing performance loss are critical issues that need to be carefully addressed in structured pruning. In this paper, we propose an effective and fast structured pruning method named SlimLLM for large language models. For channel and attention head pruning, we evaluate the importance based on the entire channel or head, rather than merely aggregating the importance of individual elements within a sub-module. This approach enables a more holistic consideration of the interdependence among elements within the sub-module. In addition, we design a simple linear regression strategy for the output matrix to quickly recover performance. We also propose layer-based importance ratio to determine the pruning ratio for each layer. Based on the LLaMA benchmark results, our SlimLLM outperforms other methods and achieves state-of-the-art performance.
Related papers
- PUMA: Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning [54.73049408950049]
We propose a Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning.<n>Our approach improves unified multimodal retrieval from both structural and learning perspectives.
arXiv Detail & Related papers (2025-07-10T16:47:25Z) - Towards Extreme Pruning of LLMs with Plug-and-Play Mixed Sparsity [32.668409666483626]
Existing pruning methods mainly focus on designing metrics to measure the importance of network components to guide pruning.<n>We propose an efficient method based on the trace of Fisher Information Matrix (FIM) to quantitatively measure and verify the different sensitivities across layers.<n>Based on this, we propose Mixed Sparsity Pruning (MSP) which uses a pruning-oriented evolutionary algorithm (EA) to determine the optimal sparsity levels for different layers.
arXiv Detail & Related papers (2025-03-14T08:05:49Z) - FASP: Fast and Accurate Structured Pruning of Large Language Models [24.185245582500876]
We introduce FASP (Fast and Accurate Structured Pruning), a novel structured pruning framework for large language models (LLMs)<n>FASP employs a distinctive pruning structure that interlinks sequential layers, allowing for the removal of columns in one layer while simultaneously eliminating corresponding rows in the preceding layer without incurring additional performance loss.<n>We evaluate FASP on the OPT and LLaMA model families, demonstrating superior performance in terms of perplexity and accuracy on downstream tasks compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-01-16T09:38:39Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - AlphaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large Language Models [94.82766517752418]
We propose AlphaPruning, which uses shape metrics to allocate layerwise sparsity ratios in a more theoretically principled manner.
Our results show that AlphaPruning prunes LLaMA-7B to 80% sparsity while maintaining reasonable perplexity, marking a first in the literature on LLMs.
arXiv Detail & Related papers (2024-10-14T03:35:11Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - ShortGPT: Layers in Large Language Models are More Redundant Than You Expect [38.148626520751385]
We show that many layers of Large Language Models (LLMs) exhibit high similarity, and some layers play a negligible role in network functionality.
We propose a straightforward pruning approach: layer removal, in which we directly delete the redundant layers.
Experiments demonstrate that our method, which we call ShortGPT, significantly outperforms previous state-of-the-art (SOTA) methods in model pruning.
arXiv Detail & Related papers (2024-03-06T17:04:18Z) - Fluctuation-based Adaptive Structured Pruning for Large Language Models [44.217363567065]
FLAP (FLuctuation-based Adaptive Structured Pruning) is a retraining-free structured pruning framework for Large Language Models.
It is hardware-friendly by effectively reducing storage and enhancing inference speed.
arXiv Detail & Related papers (2023-12-19T09:23:48Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.