Training Language Models to Generate Quality Code with Program Analysis Feedback
- URL: http://arxiv.org/abs/2505.22704v1
- Date: Wed, 28 May 2025 17:57:47 GMT
- Title: Training Language Models to Generate Quality Code with Program Analysis Feedback
- Authors: Feng Yao, Zilong Wang, Liyuan Liu, Junxia Cui, Li Zhong, Xiaohan Fu, Haohui Mai, Vish Krishnan, Jianfeng Gao, Jingbo Shang,
- Abstract summary: Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
- Score: 66.0854002147103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code generation with large language models (LLMs), often termed vibe coding, is increasingly adopted in production but fails to ensure code quality, particularly in security (e.g., SQL injection vulnerabilities) and maintainability (e.g., missing type annotations). Existing methods, such as supervised fine-tuning and rule-based post-processing, rely on labor-intensive annotations or brittle heuristics, limiting their scalability and effectiveness. We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code using program analysis-guided feedback. Specifically, REAL integrates two automated signals: (1) program analysis detecting security or maintainability defects and (2) unit tests ensuring functional correctness. Unlike prior work, our framework is prompt-agnostic and reference-free, enabling scalable supervision without manual intervention. Experiments across multiple datasets and model scales demonstrate that REAL outperforms state-of-the-art methods in simultaneous assessments of functionality and code quality. Our work bridges the gap between rapid prototyping and production-ready code, enabling LLMs to deliver both speed and quality.
Related papers
- Evaluating Large Language Models on Non-Code Software Engineering Tasks [4.381476817430934]
Large Language Models (LLMs) have demonstrated remarkable capabilities in code understanding and generation.<n>We present the first comprehensive benchmark, which we name Software Engineering Language Understanding' (SELU)<n>SELU covers classification, regression, Named Entity Recognition (NER) and Masked Language Modeling (MLM) targets, with data drawn from diverse sources.
arXiv Detail & Related papers (2025-06-12T15:52:32Z) - Enhancing LLM Code Generation: A Systematic Evaluation of Multi-Agent Collaboration and Runtime Debugging for Improved Accuracy, Reliability, and Latency [0.0]
We study how different programming activities compositions and training paradigms influence code generation effectiveness.<n>Our findings provide valuable insights for organizations seeking robust AI-driven coding solutions.
arXiv Detail & Related papers (2025-05-04T14:44:27Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions within code generation scenarios.<n>We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models [81.12673534903979]
Tool learning has emerged as a crucial capability for large language models (LLMs) to solve complex real-world tasks through interaction with external tools.<n>We propose ToolCoder, a novel framework that reformulates tool learning as a code generation task.
arXiv Detail & Related papers (2025-02-17T03:42:28Z) - Correctness Assessment of Code Generated by Large Language Models Using Internal Representations [4.32362000083889]
We introduce OPENIA, a novel framework to assess the correctness of code generated by Large Language Models (LLMs)<n>Our empirical analysis reveals that these internal representations encode latent information, which strongly correlates with the correctness of the generated code.<n> OPENIA consistently outperforms baseline models, achieving higher accuracy, precision, recall, and F1-Scores with up to a 2X improvement in standalone code generation.
arXiv Detail & Related papers (2025-01-22T15:04:13Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
Large Language Models (LLMs) have strong capabilities in code comprehension, but fine-tuning costs and semantic alignment issues limit their project-specific optimization.
Code models such CodeBERT are easy to fine-tune, but it is often difficult to learn vulnerability semantics from complex code languages.
This paper introduces the Multi-Model Collaborative Vulnerability Detection approach (M2CVD) to improve the detection accuracy of code models.
arXiv Detail & Related papers (2024-06-10T00:05:49Z) - DeAL: Decoding-time Alignment for Large Language Models [59.63643988872571]
Large Language Models (LLMs) are nowadays expected to generate content aligned with human preferences.
We propose DeAL, a framework that allows the user to customize reward functions and enables Detime Alignment of LLMs.
Our experiments show that we can DeAL with fine-grained trade-offs, improve adherence to alignment objectives, and address residual gaps in LLMs.
arXiv Detail & Related papers (2024-02-05T06:12:29Z) - SALLM: Security Assessment of Generated Code [0.5137309756089941]
This paper describes SALLM, a framework to benchmark Large Language Models' abilities to generate secure code systematically.
The framework has three major components: a novel dataset of security-centric Python prompts, assessment techniques to evaluate the generated code, and novel metrics to evaluate the models' performance from the perspective of secure code generation.
arXiv Detail & Related papers (2023-11-01T22:46:31Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.