NGPU-LM: GPU-Accelerated N-Gram Language Model for Context-Biasing in Greedy ASR Decoding
- URL: http://arxiv.org/abs/2505.22857v1
- Date: Wed, 28 May 2025 20:43:10 GMT
- Title: NGPU-LM: GPU-Accelerated N-Gram Language Model for Context-Biasing in Greedy ASR Decoding
- Authors: Vladimir Bataev, Andrei Andrusenko, Lilit Grigoryan, Aleksandr Laptev, Vitaly Lavrukhin, Boris Ginsburg,
- Abstract summary: This work rethinks data structures for statistical n-gram language models to enable fast and parallel operations for GPU-optimized inference.<n>Our approach, named NGPU-LM, introduces customizable greedy decoding for all major ASR model types with less than 7% computational overhead.<n>The proposed approach can eliminate more than 50% of the accuracy gap between greedy and beam search for out-of-domain scenarios while avoiding significant slowdown caused by beam search.
- Score: 54.88765757043535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical n-gram language models are widely used for context-biasing tasks in Automatic Speech Recognition (ASR). However, existing implementations lack computational efficiency due to poor parallelization, making context-biasing less appealing for industrial use. This work rethinks data structures for statistical n-gram language models to enable fast and parallel operations for GPU-optimized inference. Our approach, named NGPU-LM, introduces customizable greedy decoding for all major ASR model types - including transducers, attention encoder-decoder models, and CTC - with less than 7% computational overhead. The proposed approach can eliminate more than 50% of the accuracy gap between greedy and beam search for out-of-domain scenarios while avoiding significant slowdown caused by beam search. The implementation of the proposed NGPU-LM is open-sourced.
Related papers
- Accelerated Test-Time Scaling with Model-Free Speculative Sampling [58.69141724095398]
We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach.<n>We show that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding.<n>As a model-free approach, STAND can be applied to any existing language model without additional training.
arXiv Detail & Related papers (2025-06-05T07:31:18Z) - Stochastic Configuration Machines: FPGA Implementation [4.57421617811378]
configuration networks (SCNs) are a prime choice in industrial applications due to their merits and feasibility for data modelling.
This paper aims to implement SCM models on a field programmable gate array (FPGA) and introduce binary-coded inputs to improve learning performance.
arXiv Detail & Related papers (2023-10-30T02:04:20Z) - ParaGraph: Weighted Graph Representation for Performance Optimization of
HPC Kernels [1.304892050913381]
We introduce a new graph-based program representation for parallel applications that extends the Abstract Syntax Tree.
We evaluate our proposed representation by training a Graph Neural Network (GNN) to predict the runtime of an OpenMP code region.
Results show that our approach is indeed effective and has normalized RMSE as low as 0.004 to at most 0.01 in its runtime predictions.
arXiv Detail & Related papers (2023-04-07T05:52:59Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Hector: An Efficient Programming and Compilation Framework for Implementing Relational Graph Neural Networks in GPU Architectures [24.841128441671234]
RGNNs are graph neural networks with dedicated structures for modeling the different types of nodes and edges in heterogeneous graphs.
We propose Hector, a novel two-level intermediate representation and its code generator framework, to capture the key properties of RGNN models.
Hector achieves up to 9.9x speed-up in inference and 43.7x speed-up in training compared with the state-of-the-art public systems.
arXiv Detail & Related papers (2023-01-16T06:53:18Z) - Communication-Efficient TeraByte-Scale Model Training Framework for
Online Advertising [32.5337643852876]
Click-Through Rate (CTR) prediction is a crucial component in the online advertising industry.
We identify two major challenges in the existing GPU training for massivescale ad models.
We propose a hardware-aware training workflow that couples the hardware topology into the algorithm design.
arXiv Detail & Related papers (2022-01-05T18:09:11Z) - Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous
Multi-GPU Servers [65.60007071024629]
We show that Adaptive SGD outperforms four state-of-the-art solutions in time-to-accuracy.
We show experimentally that Adaptive SGD outperforms four state-of-the-art solutions in time-to-accuracy.
arXiv Detail & Related papers (2021-10-13T20:58:15Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - Applying GPGPU to Recurrent Neural Network Language Model based Fast
Network Search in the Real-Time LVCSR [5.0555627833288]
Recurrent Neural Network Language Models (RNNLMs) have started to be used in various fields of speech recognition.
High computational complexity of RNNLMs has been a hurdle in applying the RNNLM to a real-time Large Vocabulary Continuous Speech Recognition.
arXiv Detail & Related papers (2020-07-23T05:15:14Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle.
Surprisingly, by making a small change to the low-performing solver, we derive the new solver MPLP++ that significantly outperforms all existing solvers by a large margin.
arXiv Detail & Related papers (2020-04-16T16:20:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.