Plug-and-Play Posterior Sampling for Blind Inverse Problems
- URL: http://arxiv.org/abs/2505.22923v1
- Date: Wed, 28 May 2025 22:53:07 GMT
- Title: Plug-and-Play Posterior Sampling for Blind Inverse Problems
- Authors: Anqi Li, Weijie Gan, Ulugbek S. Kamilov,
- Abstract summary: We introduce Blind Plug-and-Play Diffusion Models (Blind-DM) as a novel framework for solving blind inverse problems.<n>Unlike conventional methods that rely on explicit priors or separate parameter estimation, our approach performs posterior sampling by recasting the problem into an alternating denoising sequence.
- Score: 13.03644140515531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Blind Plug-and-Play Diffusion Models (Blind-PnPDM) as a novel framework for solving blind inverse problems where both the target image and the measurement operator are unknown. Unlike conventional methods that rely on explicit priors or separate parameter estimation, our approach performs posterior sampling by recasting the problem into an alternating Gaussian denoising scheme. We leverage two diffusion models as learned priors: one to capture the distribution of the target image and another to characterize the parameters of the measurement operator. This PnP integration of diffusion models ensures flexibility and ease of adaptation. Our experiments on blind image deblurring show that Blind-PnPDM outperforms state-of-the-art methods in terms of both quantitative metrics and visual fidelity. Our results highlight the effectiveness of treating blind inverse problems as a sequence of denoising subproblems while harnessing the expressive power of diffusion-based priors.
Related papers
- Diffusion Models for Solving Inverse Problems via Posterior Sampling with Piecewise Guidance [52.705112811734566]
A novel diffusion-based framework is introduced for solving inverse problems using a piecewise guidance scheme.<n>The proposed method is problem-agnostic and readily adaptable to a variety of inverse problems.<n>The framework achieves a reduction in inference time of (25%) for inpainting with both random and center masks, and (23%) and (24%) for (4times) and (8times) super-resolution tasks.
arXiv Detail & Related papers (2025-07-22T19:35:14Z) - VIPaint: Image Inpainting with Pre-Trained Diffusion Models via Variational Inference [5.852077003870417]
We show that our VIPaint method significantly outperforms previous approaches in both the plausibility and diversity of imputations.<n>We show that our VIPaint method significantly outperforms previous approaches in both the plausibility and diversity of imputations.
arXiv Detail & Related papers (2024-11-28T05:35:36Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
This paper presents a novel method for addressing linear inverse problems by leveraging image-generation models based on discrete diffusion as priors.
To the best of our knowledge, this is the first approach to use discrete diffusion model-based priors for solving image inverse problems.
arXiv Detail & Related papers (2024-10-09T06:18:25Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors [29.203951468436145]
Diffusion models (DMs) have recently shown outstanding capabilities in modeling complex image distributions.
We propose a Markov chain Monte Carlo algorithm that performs posterior sampling for general inverse problems.
We demonstrate the effectiveness of the proposed method on six inverse problems.
arXiv Detail & Related papers (2024-05-29T05:42:25Z) - Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
In science and engineering, the goal is to infer an unknown image from a small number of measurements collected from a known forward model describing certain imaging modality.
Motivated Score-based diffusion models, due to its empirical success, have emerged as an impressive candidate of an exemplary prior in image reconstruction.
arXiv Detail & Related papers (2024-03-25T15:58:26Z) - BlindDiff: Empowering Degradation Modelling in Diffusion Models for Blind Image Super-Resolution [52.47005445345593]
BlindDiff is a DM-based blind SR method to tackle the blind degradation settings in SISR.
BlindDiff seamlessly integrates the MAP-based optimization into DMs.
Experiments on both synthetic and real-world datasets show that BlindDiff achieves the state-of-the-art performance.
arXiv Detail & Related papers (2024-03-15T11:21:34Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse
Problems with Denoising Diffusion Restoration [64.8770356696056]
We propose GibbsDDRM, an extension of Denoising Diffusion Restoration Models (DDRM) to a blind setting in which the linear measurement operator is unknown.
The proposed method is problem-agnostic, meaning that a pre-trained diffusion model can be applied to various inverse problems without fine-tuning.
arXiv Detail & Related papers (2023-01-30T06:27:48Z) - Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems [14.809545109705256]
This paper presents a fast and effective solution by proposing a simple closed-form approximation to the likelihood score.
For both diffusion and flow-based models, extensive experiments are conducted on various noisy linear inverse problems.
Our method demonstrates highly competitive or even better reconstruction performances while being significantly faster than all the baseline methods.
arXiv Detail & Related papers (2022-11-20T01:09:49Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.