DyePack: Provably Flagging Test Set Contamination in LLMs Using Backdoors
- URL: http://arxiv.org/abs/2505.23001v3
- Date: Wed, 04 Jun 2025 02:31:16 GMT
- Title: DyePack: Provably Flagging Test Set Contamination in LLMs Using Backdoors
- Authors: Yize Cheng, Wenxiao Wang, Mazda Moayeri, Soheil Feizi,
- Abstract summary: We introduce DyePack, a framework that leverages backdoor attacks to identify models that used benchmark test sets during training.<n>Like how banks mix dye packs with their money to mark robbers, DyePack mixes backdoor samples with the test data to flag models that trained on it.<n>We evaluate DyePack on five models across three datasets, covering both multiple-choice and open-ended generation tasks.
- Score: 52.52021579531363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open benchmarks are essential for evaluating and advancing large language models, offering reproducibility and transparency. However, their accessibility makes them likely targets of test set contamination. In this work, we introduce DyePack, a framework that leverages backdoor attacks to identify models that used benchmark test sets during training, without requiring access to the loss, logits, or any internal details of the model. Like how banks mix dye packs with their money to mark robbers, DyePack mixes backdoor samples with the test data to flag models that trained on it. We propose a principled design incorporating multiple backdoors with stochastic targets, enabling exact false positive rate (FPR) computation when flagging every model. This provably prevents false accusations while providing strong evidence for every detected case of contamination. We evaluate DyePack on five models across three datasets, covering both multiple-choice and open-ended generation tasks. For multiple-choice questions, it successfully detects all contaminated models with guaranteed FPRs as low as 0.000073% on MMLU-Pro and 0.000017% on Big-Bench-Hard using eight backdoors. For open-ended generation tasks, it generalizes well and identifies all contaminated models on Alpaca with a guaranteed false positive rate of just 0.127% using six backdoors.
Related papers
- Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
We propose to use model pairs on open-set classification tasks for detecting backdoors.
We show that this score, can be an indicator for the presence of a backdoor despite models being of different architectures.
This technique allows for the detection of backdoors on models designed for open-set classification tasks, which is little studied in the literature.
arXiv Detail & Related papers (2024-02-28T21:29:16Z) - Elijah: Eliminating Backdoors Injected in Diffusion Models via
Distribution Shift [86.92048184556936]
We propose the first backdoor detection and removal framework for DMs.
We evaluate our framework Elijah on hundreds of DMs of 3 types including DDPM, NCSN and LDM.
Our approach can have close to 100% detection accuracy and reduce the backdoor effects to close to zero without significantly sacrificing the model utility.
arXiv Detail & Related papers (2023-11-27T23:58:56Z) - Backdoor Learning on Sequence to Sequence Models [94.23904400441957]
In this paper, we study whether sequence-to-sequence (seq2seq) models are vulnerable to backdoor attacks.
Specifically, we find by only injecting 0.2% samples of the dataset, we can cause the seq2seq model to generate the designated keyword and even the whole sentence.
Extensive experiments on machine translation and text summarization have been conducted to show our proposed methods could achieve over 90% attack success rate on multiple datasets and models.
arXiv Detail & Related papers (2023-05-03T20:31:13Z) - Mask and Restore: Blind Backdoor Defense at Test Time with Masked
Autoencoder [57.739693628523]
We propose a framework for blind backdoor defense with Masked AutoEncoder (BDMAE)
BDMAE detects possible triggers in the token space using image structural similarity and label consistency between the test image and MAE restorations.
Our approach is blind to the model restorations, trigger patterns and image benignity.
arXiv Detail & Related papers (2023-03-27T19:23:33Z) - Detecting Backdoors During the Inference Stage Based on Corruption
Robustness Consistency [33.42013309686333]
We propose a test-time trigger sample detection method that only needs the hard-label outputs of the victim models without any extra information.
Our journey begins with the intriguing observation that the backdoor-infected models have similar performance across different image corruptions for the clean images, but perform discrepantly for the trigger samples.
Extensive experiments demonstrate that compared with state-of-the-art defenses, TeCo outperforms them on different backdoor attacks, datasets, and model architectures.
arXiv Detail & Related papers (2023-03-27T07:10:37Z) - BDMMT: Backdoor Sample Detection for Language Models through Model
Mutation Testing [14.88575793895578]
We propose a defense method based on deep model mutation testing.
We first confirm the effectiveness of model mutation testing in detecting backdoor samples.
We then systematically defend against three extensively studied backdoor attack levels.
arXiv Detail & Related papers (2023-01-25T05:24:46Z) - Kallima: A Clean-label Framework for Textual Backdoor Attacks [25.332731545200808]
We propose the first clean-label framework Kallima for synthesizing mimesis-style backdoor samples.
We modify inputs belonging to the target class with adversarial perturbations, making the model rely more on the backdoor trigger.
arXiv Detail & Related papers (2022-06-03T21:44:43Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z) - BaFFLe: Backdoor detection via Feedback-based Federated Learning [3.6895394817068357]
We propose Backdoor detection via Feedback-based Federated Learning (BAFFLE)
We show that BAFFLE reliably detects state-of-the-art backdoor attacks with a detection accuracy of 100% and a false-positive rate below 5%.
arXiv Detail & Related papers (2020-11-04T07:44:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.