DINGO: Constrained Inference for Diffusion LLMs
- URL: http://arxiv.org/abs/2505.23061v1
- Date: Thu, 29 May 2025 04:04:54 GMT
- Title: DINGO: Constrained Inference for Diffusion LLMs
- Authors: Tarun Suresh, Debangshu Banerjee, Shubham Ugare, Sasa Misailovic, Gagandeep Singh,
- Abstract summary: Diffusion models lack the ability to provably enforce user-specified formal constraints.<n>We propose DINGO, a dynamic programming-based decoding strategy that is both efficient and provably distribution-preserving.
- Score: 5.971462597321995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion LLMs have emerged as a promising alternative to conventional autoregressive LLMs, offering significant potential for improved runtime efficiency. However, existing diffusion models lack the ability to provably enforce user-specified formal constraints, such as regular expressions, which makes them unreliable for tasks that require structured outputs, such as fixed-schema JSON generation. Unlike autoregressive models that generate tokens sequentially, diffusion LLMs predict a block of tokens in parallel. This parallelism makes traditional constrained decoding algorithms, which are designed for sequential token prediction, ineffective at preserving the true output distribution. To address this limitation, we propose DINGO, a dynamic programming-based constrained decoding strategy that is both efficient and provably distribution-preserving. DINGO enables sampling of output strings with the highest probability under the model's predicted distribution, while strictly satisfying any user-specified regular expression. On standard symbolic math and JSON generation benchmarks, DINGO achieves up to a 68 percentage point improvement over unconstrained inference
Related papers
- Accelerating Diffusion LLMs via Adaptive Parallel Decoding [50.9948753314669]
We introduce adaptive parallel decoding (APD), a novel method that dynamically adjusts the number of tokens sampled in parallel.<n>APD provides markedly higher throughput with minimal quality degradations on downstream benchmarks.
arXiv Detail & Related papers (2025-05-31T06:10:10Z) - Reviving Any-Subset Autoregressive Models with Principled Parallel Sampling and Speculative Decoding [55.2480439325792]
In arbitrary-order language models, it is an open question how to sample tokens in parallel from the correct joint distribution.<n>We find that a different class of models, any-subset autoregressive models (AS-ARMs), holds the solution.<n>We show that AS-ARMs achieve state-of-the-art performance among sub-200M parameter models on infilling benchmark tasks, and nearly match the performance of models 50X larger on code generation.
arXiv Detail & Related papers (2025-04-29T06:33:13Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - Graph-Structured Speculative Decoding [52.94367724136063]
Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models.
We introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses.
We observe a remarkable speedup of 1.73$times$ to 1.96$times$, significantly surpassing standard speculative decoding.
arXiv Detail & Related papers (2024-07-23T06:21:24Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context.
The typical autoregressive decoding method requires a separate forward pass through the model for each token generated.
We introduce ADED, which accelerates LLM decoding without requiring fine-tuning.
arXiv Detail & Related papers (2024-06-27T22:20:39Z) - Order-Independence Without Fine Tuning [18.020492646988746]
We present Set-Based Prompting, a technique that guarantees the output of an LLM will not have order dependence on a specified set of sub-sequences.<n>Despite our inputs being out of distribution, the impact on expected accuracy is small, where the expectation is over the order of uniformly chosen shuffling of the candidate responses.
arXiv Detail & Related papers (2024-06-04T16:09:13Z) - Non-autoregressive Sequence-to-Sequence Vision-Language Models [59.445765313094434]
We propose a parallel decoding sequence-to-sequence vision-language model that marginalizes over multiple inference paths in the decoder.<n>The model achieves performance on-par with its state-of-the-art autoregressive counterpart, but is faster at inference time.
arXiv Detail & Related papers (2024-03-04T17:34:59Z) - SPEED: Speculative Pipelined Execution for Efficient Decoding [35.45955948053644]
We propose SPEED, which improves inference efficiency by speculatively executing multiple future tokens in parallel with the current token.
For Transformer decoders that employ parameter sharing, the memory operations for the tokens executing in parallel can be amortized.
We demonstrate the efficiency of our method in terms of latency reduction relative to model accuracy and demonstrate how speculation allows for training deeper decoders with parameter sharing with minimal runtime overhead.
arXiv Detail & Related papers (2023-10-18T16:07:01Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.