Loss-Guided Model Sharing and Local Learning Correction in Decentralized Federated Learning for Crop Disease Classification
- URL: http://arxiv.org/abs/2505.23063v1
- Date: Thu, 29 May 2025 04:12:53 GMT
- Title: Loss-Guided Model Sharing and Local Learning Correction in Decentralized Federated Learning for Crop Disease Classification
- Authors: Denis Mamba Kabala, Adel Hafiane, Laurent Bobelin, Raphael Canals,
- Abstract summary: We introduce a novel Decentralized Federated Learning (DFL) framework that uses validation loss (Loss_val) to guide model sharing between peers and to correct local training via an adaptive loss function controlled by weighting parameter.<n>Results demonstrate that our DFL approach not only improves accuracy and convergence speed, but also ensures better generalization and robustness across heterogeneous data environments.
- Score: 3.344876133162209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crop disease detection and classification is a critical challenge in agriculture, with major implications for productivity, food security, and environmental sustainability. While deep learning models such as CNN and ViT have shown excellent performance in classifying plant diseases from images, their large-scale deployment is often limited by data privacy concerns. Federated Learning (FL) addresses this issue, but centralized FL remains vulnerable to single-point failures and scalability limits. In this paper, we introduce a novel Decentralized Federated Learning (DFL) framework that uses validation loss (Loss_val) both to guide model sharing between peers and to correct local training via an adaptive loss function controlled by weighting parameter. We conduct extensive experiments using PlantVillage datasets with three deep learning architectures (ResNet50, VGG16, and ViT_B16), analyzing the impact of weighting parameter, the number of shared models, the number of clients, and the use of Loss_val versus Loss_train of other clients. Results demonstrate that our DFL approach not only improves accuracy and convergence speed, but also ensures better generalization and robustness across heterogeneous data environments making it particularly well-suited for privacy-preserving agricultural applications.
Related papers
- A Federated Random Forest Solution for Secure Distributed Machine Learning [44.99833362998488]
This paper introduces a federated learning framework for Random Forest classifiers that preserves data privacy and provides robust performance in distributed settings.<n>By leveraging PySyft for secure, privacy-aware computation, our method enables multiple institutions to collaboratively train Random Forest models on locally stored data.<n>Experiments on two real-world healthcare benchmarks demonstrate that the federated approach maintains competitive accuracy - within a maximum 9% margin of centralized methods.
arXiv Detail & Related papers (2025-05-12T21:40:35Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.<n>We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.<n>Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - FedHPL: Efficient Heterogeneous Federated Learning with Prompt Tuning and Logit Distillation [32.305134875959226]
Federated learning (FL) is a privacy-preserving paradigm that enables distributed clients to collaboratively train models with a central server.
We propose FedHPL, a parameter-efficient unified $textbfFed$erated learning framework for $textbfH$eterogeneous settings.
We show that our framework outperforms state-of-the-art FL approaches, with less overhead and training rounds.
arXiv Detail & Related papers (2024-05-27T15:25:32Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
Federated learning (FL) enables distributed clients to collaboratively train a global model while preserving their data privacy.
We propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems.
arXiv Detail & Related papers (2023-11-28T05:44:26Z) - Federated Meta-Learning for Few-Shot Fault Diagnosis with Representation
Encoding [21.76802204235636]
We propose representation encoding-based federated meta-learning (REFML) for few-shot fault diagnosis.
REFML harnesses the inherent generalization among training clients, effectively transforming it into an advantage for out-of-distribution.
It achieves an increase in accuracy by 2.17%-6.50% when tested on unseen working conditions of the same equipment type and 13.44%-18.33% when tested on totally unseen equipment types.
arXiv Detail & Related papers (2023-10-13T10:48:28Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Federated Survival Analysis with Discrete-Time Cox Models [0.46331617589391827]
We build machine learning models from decentralized datasets located in different centers with federated learning (FL)
We show that the resulting model may suffer from important performance loss in some adverse settings.
Using this approach, we train survival models using standard FL techniques on synthetic data, as well as real-world datasets from The Cancer Genome Atlas (TCGA)
arXiv Detail & Related papers (2020-06-16T08:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.