Contextualized Automatic Speech Recognition with Dynamic Vocabulary Prediction and Activation
- URL: http://arxiv.org/abs/2505.23077v1
- Date: Thu, 29 May 2025 04:31:33 GMT
- Title: Contextualized Automatic Speech Recognition with Dynamic Vocabulary Prediction and Activation
- Authors: Zhennan Lin, Kaixun Huang, Wei Ren, Linju Yang, Lei Xie,
- Abstract summary: We propose an encoder-based phrase-level contextualized ASR method that leverages dynamic vocabulary prediction and activation.<n>Experiments on Librispeech and Wenetspeech datasets demonstrate that our approach achieves relative WER reductions of 28.31% and 23.49% compared to baseline.
- Score: 7.455706251115513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep biasing improves automatic speech recognition (ASR) performance by incorporating contextual phrases. However, most existing methods enhance subwords in a contextual phrase as independent units, potentially compromising contextual phrase integrity, leading to accuracy reduction. In this paper, we propose an encoder-based phrase-level contextualized ASR method that leverages dynamic vocabulary prediction and activation. We introduce architectural optimizations and integrate a bias loss to extend phrase-level predictions based on frame-level outputs. We also introduce a confidence-activated decoding method that ensures the complete output of contextual phrases while suppressing incorrect bias. Experiments on Librispeech and Wenetspeech datasets demonstrate that our approach achieves relative WER reductions of 28.31% and 23.49% compared to baseline, with the WER on contextual phrases decreasing relatively by 72.04% and 75.69%.
Related papers
- Contextualized End-to-end Automatic Speech Recognition with Intermediate Biasing Loss [44.94458898538114]
Using explicit biasing loss as an auxiliary task in the encoder intermediate layers may better align text tokens or audio frames with the desired objectives.
Our proposed intermediate biasing loss brings more regularization and contextualization to the network.
arXiv Detail & Related papers (2024-06-23T14:22:59Z) - Towards Unsupervised Speech Recognition Without Pronunciation Models [57.222729245842054]
In this article, we tackle the challenge of developing ASR systems without paired speech and text corpora.<n>We experimentally demonstrate that an unsupervised speech recognizer can emerge from joint speech-to-speech and text-to-text masked token-infilling.<n>This innovative model surpasses the performance of previous unsupervised ASR models under the lexicon-free setting.
arXiv Detail & Related papers (2024-06-12T16:30:58Z) - Text Injection for Neural Contextual Biasing [57.589903308622745]
This work proposes contextual text injection (CTI) to enhance contextual ASR.
CTI with 100 billion text sentences can achieve up to 43.3% relative WER reduction from a strong neural biasing model.
arXiv Detail & Related papers (2024-06-05T04:20:17Z) - Contextualized Automatic Speech Recognition with Attention-Based Bias
Phrase Boosted Beam Search [44.94458898538114]
This paper proposes an attention-based contextual biasing method that can be customized using an editable phrase list.
The proposed method can be trained effectively by combining a bias phrase index loss and special tokens to detect the bias phrases in the input speech data.
arXiv Detail & Related papers (2024-01-19T01:36:07Z) - Adaptive Contextual Biasing for Transducer Based Streaming Speech
Recognition [21.90433428015086]
deep biasing methods have emerged as a promising solution for speech recognition of personalized words.
For real-world voice assistants, always biasing on such words with high prediction scores can significantly degrade the performance of recognizing common words.
We propose an adaptive contextual bias based Context-Aware Transformer (CATT) that utilizes the biased encoder and predictors to perform streaming prediction of contextual phrase occurrences.
arXiv Detail & Related papers (2023-06-01T15:33:30Z) - Contextualized End-to-End Speech Recognition with Contextual Phrase
Prediction Network [14.115294331065318]
We introduce a contextual phrase prediction network for an attention-based deep bias method.
This network predicts context phrases in utterances using contextual embeddings and calculates bias loss to assist in the training of the contextualized model.
Our method achieved a significant word error rate (WER) reduction across various end-to-end speech recognition models.
arXiv Detail & Related papers (2023-05-21T16:08:04Z) - Robust Acoustic and Semantic Contextual Biasing in Neural Transducers
for Speech Recognition [14.744220870243932]
We propose to use lightweight character representations to encode fine-grained pronunciation features to improve contextual biasing.
We further integrate pretrained neural language model (NLM) based encoders to encode the utterance's semantic context.
Experiments using a Conformer Transducer model on the Librispeech dataset show a 4.62% - 9.26% relative WER improvement on different biasing list sizes.
arXiv Detail & Related papers (2023-05-09T08:51:44Z) - Speaker Embedding-aware Neural Diarization for Flexible Number of
Speakers with Textual Information [55.75018546938499]
We propose the speaker embedding-aware neural diarization (SEND) method, which predicts the power set encoded labels.
Our method achieves lower diarization error rate than the target-speaker voice activity detection.
arXiv Detail & Related papers (2021-11-28T12:51:04Z) - Label-Synchronous Speech-to-Text Alignment for ASR Using Forward and
Backward Transformers [49.403414751667135]
This paper proposes a novel label-synchronous speech-to-text alignment technique for automatic speech recognition (ASR)
The proposed method re-defines the speech-to-text alignment as a label-synchronous text mapping problem.
Experiments using the corpus of spontaneous Japanese (CSJ) demonstrate that the proposed method provides an accurate utterance-wise alignment.
arXiv Detail & Related papers (2021-04-21T03:05:12Z) - Dynamic Acoustic Unit Augmentation With BPE-Dropout for Low-Resource
End-to-End Speech Recognition [62.94773371761236]
We consider building an effective end-to-end ASR system in low-resource setups with a high OOV rate.
We propose a method of dynamic acoustic unit augmentation based on the BPE-dropout technique.
Our monolingual Turkish Conformer established a competitive result with 22.2% character error rate (CER) and 38.9% word error rate (WER)
arXiv Detail & Related papers (2021-03-12T10:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.