Equivariant Spherical Transformer for Efficient Molecular Modeling
- URL: http://arxiv.org/abs/2505.23086v1
- Date: Thu, 29 May 2025 04:43:07 GMT
- Title: Equivariant Spherical Transformer for Efficient Molecular Modeling
- Authors: Junyi An, Xinyu Lu, Chao Qu, Yunfei Shi, Peijia Lin, Qianwei Tang, Licheng Xu, Fenglei Cao, Yuan Qi,
- Abstract summary: We introduce the Equivariant Spherical Transformer (EST), a novel framework that leverages a Transformer structure within the spatial domain of group representations.<n>EST can encompass the function space of tensor products while achieving superior expressiveness.<n>Our experiments demonstrate state-of-the-art performance by EST on various molecular benchmarks, including OC20 and QM9.
- Score: 6.616200165174097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: SE(3)-equivariant Graph Neural Networks (GNNs) have significantly advanced molecular system modeling by employing group representations. However, their message passing processes, which rely on tensor product-based convolutions, are limited by insufficient non-linearity and incomplete group representations, thereby restricting expressiveness. To overcome these limitations, we introduce the Equivariant Spherical Transformer (EST), a novel framework that leverages a Transformer structure within the spatial domain of group representations after Fourier transform. We theoretically and empirically demonstrate that EST can encompass the function space of tensor products while achieving superior expressiveness. Furthermore, EST's equivariant inductive bias is guaranteed through a uniform sampling strategy for the Fourier transform. Our experiments demonstrate state-of-the-art performance by EST on various molecular benchmarks, including OC20 and QM9.
Related papers
- Sinusoidal Approximation Theorem for Kolmogorov-Arnold Networks [0.0]
Kolmogorov-Arnold Networks (KANs) have been recently proposed as an alternative to multilayer perceptrons.<n>We propose a novel KAN variant by replacing both the inner and outer functions in the Kolmogorov-Arnold representation with weighted sinusoidal functions of learnable frequencies.<n>Inspired by simplifications introduced by Lorentz and Sprecher, we fix the phases of the sinusoidal activations to linearly spaced constant values and provide a proof of its theoretical validity.
arXiv Detail & Related papers (2025-08-01T01:16:09Z) - Equivariant Neural Diffusion for Molecule Generation [3.9703886835821973]
We introduce Equivariant Neural Diffusion (END) for molecule generation in 3D.<n>END is a novel diffusion model for molecule generation in 3D that is equivariant to Euclidean transformations.
arXiv Detail & Related papers (2025-06-12T09:57:50Z) - Rao-Blackwell Gradient Estimators for Equivariant Denoising Diffusion [41.50816120270017]
In domains such as molecular and protein generation, physical systems exhibit inherent symmetries that are critical to model.<n>We present a framework that reduces training variance and provides a provably lower-variance gradient estimator.<n>We also present a practical implementation of this estimator incorporating the loss and sampling procedure through a method we call Orbit Diffusion.
arXiv Detail & Related papers (2025-02-14T03:26:57Z) - Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism [12.008737454250463]
We propose using fusion diagrams, a technique widely employed in simulating SU($2$)-symmetric quantum many-body problems, to design new equivariant components for equivariant neural networks.
When applied to particles within a given local neighborhood, the resulting components, which we term "fusion blocks," serve as universal approximators of any continuous equivariant function.
Our approach, which combines tensor networks with equivariant neural networks, suggests a potentially fruitful direction for designing more expressive equivariant neural networks.
arXiv Detail & Related papers (2022-11-14T16:06:59Z) - Unified Fourier-based Kernel and Nonlinearity Design for Equivariant
Networks on Homogeneous Spaces [52.424621227687894]
We introduce a unified framework for group equivariant networks on homogeneous spaces.
We take advantage of the sparsity of Fourier coefficients of the lifted feature fields.
We show that other methods treating features as the Fourier coefficients in the stabilizer subgroup are special cases of our activation.
arXiv Detail & Related papers (2022-06-16T17:59:01Z) - Deformation Robust Roto-Scale-Translation Equivariant CNNs [10.44236628142169]
Group-equivariant convolutional neural networks (G-CNNs) achieve significantly improved generalization performance with intrinsic symmetry.
General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation.
arXiv Detail & Related papers (2021-11-22T03:58:24Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
We introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables.
We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST.
We demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks.
arXiv Detail & Related papers (2021-09-03T09:25:57Z) - E(n) Equivariant Normalizing Flows for Molecule Generation in 3D [87.12477361140716]
This paper introduces a generative model equivariant to Euclidean symmetries: E(n) Equivariant Normalizing Flows (E-NFs)
To the best of our knowledge, this is the first likelihood-based deep generative model that generates molecules in 3D.
arXiv Detail & Related papers (2021-05-19T09:28:54Z) - Invariant Deep Compressible Covariance Pooling for Aerial Scene
Categorization [80.55951673479237]
We propose a novel invariant deep compressible covariance pooling (IDCCP) to solve nuisance variations in aerial scene categorization.
We conduct extensive experiments on the publicly released aerial scene image data sets and demonstrate the superiority of this method compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:13:07Z) - Lorentz Group Equivariant Neural Network for Particle Physics [58.56031187968692]
We present a neural network architecture that is fully equivariant with respect to transformations under the Lorentz group.
For classification tasks in particle physics, we demonstrate that such an equivariant architecture leads to drastically simpler models that have relatively few learnable parameters.
arXiv Detail & Related papers (2020-06-08T17:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.