ContextQFormer: A New Context Modeling Method for Multi-Turn Multi-Modal Conversations
- URL: http://arxiv.org/abs/2505.23121v2
- Date: Thu, 17 Jul 2025 16:49:08 GMT
- Title: ContextQFormer: A New Context Modeling Method for Multi-Turn Multi-Modal Conversations
- Authors: Yiming Lei, Zhizheng Yang, Zeming Liu, Haitao Leng, Shaoguo Liu, Tingting Gao, Qingjie Liu, Yunhong Wang,
- Abstract summary: We introduce a context modeling module, termed ContextQFormer, to enhance the presentation of contextual information.<n>To facilitate further research, we build a new multi-turn multi-modal dialogue dataset (TMDialog) for pre-training, instruction-tuning, and evaluation.<n>In addition, ContextQFormer is compared with three baselines on TMDialog and experimental results illustrate that ContextQFormer achieves an improvement of 2%-4% in available rate over baselines.
- Score: 38.40471808648207
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Multi-modal large language models have demonstrated remarkable zero-shot abilities and powerful image-understanding capabilities. However, the existing open-source multi-modal models suffer from the weak capability of multi-turn interaction, especially for long contexts. To address the issue, we first introduce a context modeling module, termed ContextQFormer, which utilizes a memory block to enhance the presentation of contextual information. Furthermore, to facilitate further research, we carefully build a new multi-turn multi-modal dialogue dataset (TMDialog) for pre-training, instruction-tuning, and evaluation, which will be open-sourced lately. Compared with other multi-modal dialogue datasets, TMDialog contains longer conversations, which supports the research of multi-turn multi-modal dialogue. In addition, ContextQFormer is compared with three baselines on TMDialog and experimental results illustrate that ContextQFormer achieves an improvement of 2%-4% in available rate over baselines.
Related papers
- Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts [56.7225771305861]
This paper introduces Multi-Modal Retrieval-Augmented Generation (M$2$RAG), a benchmark designed to evaluate the effectiveness of Multi-modal Large Language Models.<n>The benchmark comprises four tasks: image captioning, multi-modal question answering, multi-modal fact verification, and image reranking.<n>To enhance the context utilization capabilities of MLLMs, we also introduce Multi-Modal Retrieval-Augmented Instruction Tuning (MM-RAIT)
arXiv Detail & Related papers (2025-02-24T16:25:25Z) - S3: A Simple Strong Sample-effective Multimodal Dialog System [61.31055673156622]
We present a conceptually simple yet powerful baseline for the multimodal dialog task, an S3 model, that achieves near state-of-the-art results.
The system is based on a pre-trained large language model, pre-trained modality encoders for image and audio, and a trainable modality projector.
arXiv Detail & Related papers (2024-06-26T12:45:43Z) - DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation [46.085482021301516]
We propose DialogGen to align off-the-shelf MLLMs and T2I models to build a Multi-modal Interactive Dialogue System.<n>It is composed of drawing prompt alignment, careful training data curation, and error correction.<n>Our experiments on DialogGen and user study demonstrate the effectiveness of DialogGen compared with other State-of-the-Art models.
arXiv Detail & Related papers (2024-03-13T18:00:01Z) - ChatterBox: Multi-round Multimodal Referring and Grounding [108.9673313949746]
We present a new benchmark and an efficient vision-language model for this purpose.
The proposed model, named ChatterBox, utilizes a two-branch architecture to collaboratively handle vision and language tasks.
Experiments show that ChatterBox outperforms existing models in MRG both quantitatively and qualitatively.
arXiv Detail & Related papers (2024-01-24T09:02:00Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
We propose a parameter-efficient prompt-tuning method named DialCLIP for multi-modal dialog retrieval.
Our approach introduces a multi-modal context generator to learn context features which are distilled into prompts within the pre-trained vision-language model CLIP.
To facilitate various types of retrieval, we also design multiple experts to learn mappings from CLIP outputs to multi-modal representation space.
arXiv Detail & Related papers (2024-01-02T07:40:12Z) - DeepSpeed-VisualChat: Multi-Round Multi-Image Interleave Chat via
Multi-Modal Causal Attention [55.2825684201129]
DeepSpeed-VisualChat is designed to optimize Large Language Models (LLMs) by incorporating multi-modal capabilities.
Our framework is notable for (1) its open-source support for multi-round and multi-image dialogues, (2) introducing an innovative multi-modal causal attention mechanism, and (3) utilizing data blending techniques on existing datasets to assure seamless interactions.
arXiv Detail & Related papers (2023-09-25T17:53:29Z) - IMAD: IMage-Augmented multi-modal Dialogue [0.043847653914745384]
This paper presents a novel perspective on multi-modal dialogue systems, which interprets the image in the context of the dialogue.
We propose a two-stage approach to automatically construct a multi-modal dialogue dataset.
In the first stage, we utilize text-to-image similarity and sentence similarity to identify which utterances could be replaced with an image.
In the second stage, we replace those utterances by selecting a subset of relevant images and filtering them with a visual question answering model.
arXiv Detail & Related papers (2023-05-17T18:38:10Z) - Modeling Text-visual Mutual Dependency for Multi-modal Dialog Generation [35.45552689723718]
We propose frameworks to resolve a specific case of multi-modal dialog generation in the real world.
Specifically, we propose to model the mutual dependency between text-visual features.
We observe significant performance boosts over vanilla models when the mutual dependency between text and visual features is modeled.
arXiv Detail & Related papers (2021-05-30T07:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.