FreRA: A Frequency-Refined Augmentation for Contrastive Learning on Time Series Classification
- URL: http://arxiv.org/abs/2505.23181v1
- Date: Thu, 29 May 2025 07:18:28 GMT
- Title: FreRA: A Frequency-Refined Augmentation for Contrastive Learning on Time Series Classification
- Authors: Tian Tian, Chunyan Miao, Hangwei Qian,
- Abstract summary: We present a novel perspective from the frequency domain and identify three advantages for downstream classification: global, independent, and compact.<n>We propose the lightweight yet effective Frequency Refined Augmentation (FreRA) tailored for time series contrastive learning on classification tasks.<n>FreRA consistently outperforms ten leading baselines on time series classification, anomaly detection, and transfer learning tasks.
- Score: 56.925103708982164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning has emerged as a competent approach for unsupervised representation learning. However, the design of an optimal augmentation strategy, although crucial for contrastive learning, is less explored for time series classification tasks. Existing predefined time-domain augmentation methods are primarily adopted from vision and are not specific to time series data. Consequently, this cross-modality incompatibility may distort the semantically relevant information of time series by introducing mismatched patterns into the data. To address this limitation, we present a novel perspective from the frequency domain and identify three advantages for downstream classification: global, independent, and compact. To fully utilize the three properties, we propose the lightweight yet effective Frequency Refined Augmentation (FreRA) tailored for time series contrastive learning on classification tasks, which can be seamlessly integrated with contrastive learning frameworks in a plug-and-play manner. Specifically, FreRA automatically separates critical and unimportant frequency components. Accordingly, we propose semantic-aware Identity Modification and semantic-agnostic Self-adaptive Modification to protect semantically relevant information in the critical frequency components and infuse variance into the unimportant ones respectively. Theoretically, we prove that FreRA generates semantic-preserving views. Empirically, we conduct extensive experiments on two benchmark datasets, including UCR and UEA archives, as well as five large-scale datasets on diverse applications. FreRA consistently outperforms ten leading baselines on time series classification, anomaly detection, and transfer learning tasks, demonstrating superior capabilities in contrastive representation learning and generalization in transfer learning scenarios across diverse datasets.
Related papers
- CSTA: Spatial-Temporal Causal Adaptive Learning for Exemplar-Free Video Class-Incremental Learning [62.69917996026769]
A class-incremental learning task requires learning and preserving both spatial appearance and temporal action involvement.<n>We propose a framework that equips separate adapters to learn new class patterns, accommodating the incremental information requirements unique to each class.<n>A causal compensation mechanism is proposed to reduce the conflicts during increment and memorization for between different types of information.
arXiv Detail & Related papers (2025-01-13T11:34:55Z) - Frequency-Masked Embedding Inference: A Non-Contrastive Approach for Time Series Representation Learning [0.38366697175402226]
This paper introduces Frequency-masked Embedding Inference (FEI), a novel non-contrastive method that completely eliminates the need for positive and negative samples.<n>FEI significantly outperforms existing contrastive-based methods in terms of generalization.<n>This study provides new insights into self-supervised representation learning for time series.
arXiv Detail & Related papers (2024-12-30T08:12:17Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
Time series data is characterized by its intrinsic long and short-range dependencies.
We introduce a novel Time Series Lightweight Network (TSLANet) as a universal convolutional model for diverse time series tasks.
Our experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2024-04-12T13:41:29Z) - Phase-driven Domain Generalizable Learning for Nonstationary Time Series [9.753048297746608]
We propose a time-series learning framework, PhASER.
It consists of three novel elements: 1) phase augmentation that diversifies non-stationarity while preserving discriminatory semantics, 2) separate feature encoding by viewing time-varying magnitude and phase as independent modalities, and 3) feature broadcasting by phase with a novel residual connection for inherent regularization to enhance distribution invariant learning.
arXiv Detail & Related papers (2024-02-05T02:51:37Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Distillation Enhanced Time Series Forecasting Network with Momentum Contrastive Learning [7.4106801792345705]
We propose DE-TSMCL, an innovative distillation enhanced framework for long sequence time series forecasting.
Specifically, we design a learnable data augmentation mechanism which adaptively learns whether to mask a timestamp.
Then, we propose a contrastive learning task with momentum update to explore inter-sample and intra-temporal correlations of time series.
By developing model loss from multiple tasks, we can learn effective representations for downstream forecasting task.
arXiv Detail & Related papers (2024-01-31T12:52:10Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples.
How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.
We propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning.
arXiv Detail & Related papers (2023-03-21T15:02:50Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS) is a novel disentanglement enhancement framework for sequential data.
DTS generates hierarchical semantic concepts as the interpretable and disentangled representation of time-series.
DTS achieves superior performance in downstream applications, with high interpretability of semantic concepts.
arXiv Detail & Related papers (2021-05-17T22:02:24Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z) - Benchmarking Deep Learning Interpretability in Time Series Predictions [41.13847656750174]
Saliency methods are used extensively to highlight the importance of input features in model predictions.
We set out to extensively compare the performance of various saliency-based interpretability methods across diverse neural architectures.
arXiv Detail & Related papers (2020-10-26T22:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.