Improving the Effective Receptive Field of Message-Passing Neural Networks
- URL: http://arxiv.org/abs/2505.23185v1
- Date: Thu, 29 May 2025 07:23:07 GMT
- Title: Improving the Effective Receptive Field of Message-Passing Neural Networks
- Authors: Shahaf E. Finder, Ron Shapira Weber, Moshe Eliasof, Oren Freifeld, Eran Treister,
- Abstract summary: We show and theoretically explain the limited Effective Receptive Field problem in MPNNs.<n>We propose an Interleaved Multiscale Message-Passing Neural Networks architecture to address these problems.<n>Our method incorporates a hierarchical coarsening of the graph, enabling message-passing across multiscale representations.
- Score: 17.98720458446544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Message-Passing Neural Networks (MPNNs) have become a cornerstone for processing and analyzing graph-structured data. However, their effectiveness is often hindered by phenomena such as over-squashing, where long-range dependencies or interactions are inadequately captured and expressed in the MPNN output. This limitation mirrors the challenges of the Effective Receptive Field (ERF) in Convolutional Neural Networks (CNNs), where the theoretical receptive field is underutilized in practice. In this work, we show and theoretically explain the limited ERF problem in MPNNs. Furthermore, inspired by recent advances in ERF augmentation for CNNs, we propose an Interleaved Multiscale Message-Passing Neural Networks (IM-MPNN) architecture to address these problems in MPNNs. Our method incorporates a hierarchical coarsening of the graph, enabling message-passing across multiscale representations and facilitating long-range interactions without excessive depth or parameterization. Through extensive evaluations on benchmarks such as the Long-Range Graph Benchmark (LRGB), we demonstrate substantial improvements over baseline MPNNs in capturing long-range dependencies while maintaining computational efficiency.
Related papers
- Physical Rule-Guided Convolutional Neural Network [0.0]
Physics-Guided Neural Networks (PGNNs) have emerged to address limitations by integrating scientific principles and real-world knowledge.
This paper proposes a novel Physics-Guided CNN (PGCNN) architecture that incorporates dynamic, trainable, and automated LLM-generated, widely recognized rules integrated into the model as custom layers.
The PGCNN is evaluated on multiple datasets, demonstrating superior performance compared to a baseline CNN model.
arXiv Detail & Related papers (2024-09-03T17:32:35Z) - Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs [77.42221150848535]
We propose a novel message passing function called Multiset to Multiset GNN(M2M-GNN)
Our theoretical analyses and extensive experiments demonstrate that M2M-GNN effectively alleviates the aforementioned limitations of SMP, yielding superior performance in comparison.
arXiv Detail & Related papers (2024-05-31T07:39:22Z) - Probabilistic Graph Rewiring via Virtual Nodes [21.273828055299408]
Message-passing graph neural networks (MPNNs) have emerged as a powerful paradigm for graph-based machine learning.<n>MPNNs face challenges such as under-reaching and over-squashing, where limited receptive fields and structural bottlenecks hinder information flow in the graph.<n>Here, we propose implicitly rewired message-passing neural networks (IPR-MPNNs), a novel approach that integrates implicit probabilistic graph rewiring into MPNNs.
arXiv Detail & Related papers (2024-05-27T16:11:49Z) - Understanding Virtual Nodes: Oversquashing and Node Heterogeneity [4.59357989139429]
Augmenting MPNNs with a virtual node (VN) has been found to improve performance on a range of benchmarks.<n>We provide a comprehensive theoretical analysis of the role of VNs and benefits thereof.<n>We propose a variant of VN with the same computational complexity, which can have different sensitivity to nodes based on the graph structure.
arXiv Detail & Related papers (2024-05-22T10:51:12Z) - Continuous Spiking Graph Neural Networks [43.28609498855841]
Continuous graph neural networks (CGNNs) have garnered significant attention due to their ability to generalize existing discrete graph neural networks (GNNs)<n>We introduce the high-order structure of COS-GNN, which utilizes the second-order ODE for spiking representation and continuous propagation.<n>We provide the theoretical proof that COS-GNN effectively mitigates the issues of exploding and vanishing gradients, enabling us to capture long-range dependencies between nodes.
arXiv Detail & Related papers (2024-04-02T12:36:40Z) - Probabilistically Rewired Message-Passing Neural Networks [41.554499944141654]
Message-passing graph neural networks (MPNNs) emerged as powerful tools for processing graph-structured input.
MPNNs operate on a fixed input graph structure, ignoring potential noise and missing information.
We devise probabilistically rewired MPNNs (PR-MPNNs) which learn to add relevant edges while omitting less beneficial ones.
arXiv Detail & Related papers (2023-10-03T15:43:59Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs.
We introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions.
We propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies.
arXiv Detail & Related papers (2022-10-15T18:18:55Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.