Efficiently Access Diffusion Fisher: Within the Outer Product Span Space
- URL: http://arxiv.org/abs/2505.23264v1
- Date: Thu, 29 May 2025 09:13:36 GMT
- Title: Efficiently Access Diffusion Fisher: Within the Outer Product Span Space
- Authors: Fangyikang Wang, Hubery Yin, Shaobin Zhuang, Huminhao Zhu, Yinan Li, Lei Qian, Chao Zhang, Hanbin Zhao, Hui Qian, Chen Li,
- Abstract summary: We show that the diffusion Fisher actually resides within a space spanned by the outer products of score and initial data.<n>We develop two efficient approximation algorithms to access the trace and matrix-vector multiplication of DF.<n> Experiments in likelihood evaluation and adjoint optimization demonstrate the superior accuracy and reduced computational cost of our proposed algorithms.
- Score: 18.839096876681644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent Diffusion models (DMs) advancements have explored incorporating the second-order diffusion Fisher information (DF), defined as the negative Hessian of log density, into various downstream tasks and theoretical analysis. However, current practices typically approximate the diffusion Fisher by applying auto-differentiation to the learned score network. This black-box method, though straightforward, lacks any accuracy guarantee and is time-consuming. In this paper, we show that the diffusion Fisher actually resides within a space spanned by the outer products of score and initial data. Based on the outer-product structure, we develop two efficient approximation algorithms to access the trace and matrix-vector multiplication of DF, respectively. These algorithms bypass the auto-differentiation operations with time-efficient vector-product calculations. Furthermore, we establish the approximation error bounds for the proposed algorithms. Experiments in likelihood evaluation and adjoint optimization demonstrate the superior accuracy and reduced computational cost of our proposed algorithms. Additionally, based on the novel outer-product formulation of DF, we design the first numerical verification experiment for the optimal transport property of the general PF-ODE deduced map.
Related papers
- Enhanced Derivative-Free Optimization Using Adaptive Correlation-Induced Finite Difference Estimators [6.054123928890574]
We develop an algorithm designed to enhance DFO in terms of both gradient estimation efficiency and sample efficiency.<n>We establish the consistency of our proposed algorithm and demonstrate that, despite using a batch of samples per iteration, it achieves the same convergence rate as the KW and SPSA methods.
arXiv Detail & Related papers (2025-02-28T08:05:54Z) - Derivative-Free Optimization via Finite Difference Approximation: An Experimental Study [1.3886390523644807]
Derivative-free optimization (DFO) is vital in solving complex optimization problems where only noisy function evaluations are available through an oracle.<n>Two classical iteration approaches are Kiefer-Wolfowitz (KW) and simultaneous perturbation approximation (SPSA) algorithms.<n>This paper conducts a comprehensive experimental comparison among these approaches.
arXiv Detail & Related papers (2024-10-31T18:07:44Z) - Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.<n>We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - On the Wasserstein Convergence and Straightness of Rectified Flow [54.580605276017096]
Rectified Flow (RF) is a generative model that aims to learn straight flow trajectories from noise to data.<n>We provide a theoretical analysis of the Wasserstein distance between the sampling distribution of RF and the target distribution.<n>We present general conditions guaranteeing uniqueness and straightness of 1-RF, which is in line with previous empirical findings.
arXiv Detail & Related papers (2024-10-19T02:36:11Z) - SHAP values via sparse Fourier representation [38.818224762845624]
SHAP (SHapley Additive exPlanations) values are a widely used method for local feature attribution in interpretable and explainable AI.<n>We propose an efficient two-stage algorithm for computing SHAP values in both black-box setting and tree-based models.
arXiv Detail & Related papers (2024-10-08T19:05:50Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets.
We aim to find continuous worst-case distribution (also called the Least Favorable Distribution, LFD) and sample from it.
We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy.
arXiv Detail & Related papers (2023-10-30T03:53:31Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Adaptive deep density approximation for fractional Fokker-Planck
equations [6.066542157374599]
We present an explicit PDF model induced by a flow-based deep generative model, KRnet, which constructs a transport map from a simple distribution to the target distribution.
We consider two methods to approximate the fractional Laplacian.
Based on these two different ways for the approximation of the fractional Laplacian, we propose two models, MCNF and GRBFNF, to approximate stationary FPEs and time-dependent FPEs.
arXiv Detail & Related papers (2022-10-26T00:58:17Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
Recent developments in approaches based on deep learning have achieved sub-second runtimes for DiffIR.
We propose a simple iterative scheme that functionally composes intermediate non-stationary velocity fields.
We then propose a convex optimisation model that uses a regularisation term of arbitrary order to impose smoothness on these velocity fields.
arXiv Detail & Related papers (2021-09-26T19:56:45Z) - Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative
Filtering [59.349057602266]
Variational AutoEncoder (VAE) has been extended as a representative nonlinear method for collaborative filtering.
We propose to decompose the inner-product-based softmax probability based on the inverted multi-index.
FastVAE can outperform the state-of-the-art baselines in terms of both sampling quality and efficiency.
arXiv Detail & Related papers (2021-09-13T08:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.