Beam-Guided Knowledge Replay for Knowledge-Rich Image Captioning using Vision-Language Model
- URL: http://arxiv.org/abs/2505.23358v1
- Date: Thu, 29 May 2025 11:33:36 GMT
- Title: Beam-Guided Knowledge Replay for Knowledge-Rich Image Captioning using Vision-Language Model
- Authors: Reem AlJunaid, Muzammil Behzad,
- Abstract summary: KRCapVLM is a knowledge replay-based novel image captioning framework.<n>We incorporate beam search decoding to generate more diverse and coherent captions.<n>Our proposed model demonstrates clear improvements in both the accuracy of knowledge recognition and the overall quality of generated captions.
- Score: 0.8747606955991707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating informative and knowledge-rich image captions remains a challenge for many existing captioning models, which often produce generic descriptions that lack specificity and contextual depth. To address this limitation, we propose KRCapVLM, a knowledge replay-based novel image captioning framework using vision-language model. We incorporate beam search decoding to generate more diverse and coherent captions. We also integrate attention-based modules into the image encoder to enhance feature representation. Finally, we employ training schedulers to improve stability and ensure smoother convergence during training. These proposals accelerate substantial gains in both caption quality and knowledge recognition. Our proposed model demonstrates clear improvements in both the accuracy of knowledge recognition and the overall quality of generated captions. It shows a stronger ability to generalize to previously unseen knowledge concepts, producing more informative and contextually relevant descriptions. These results indicate the effectiveness of our approach in enhancing the model's capacity to generate meaningful, knowledge-grounded captions across a range of scenarios.
Related papers
- Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process.
Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities.
We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions.
arXiv Detail & Related papers (2024-05-21T18:02:07Z) - What Makes for Good Image Captions? [50.48589893443939]
Our framework posits that good image captions should balance three key aspects: informationally sufficient, minimally redundant, and readily comprehensible by humans.
We introduce the Pyramid of Captions (PoCa) method, which generates enriched captions by integrating local and global visual information.
arXiv Detail & Related papers (2024-05-01T12:49:57Z) - Generating Action-conditioned Prompts for Open-vocabulary Video Action
Recognition [63.95111791861103]
Existing methods typically adapt pretrained image-text models to the video domain.
We argue that augmenting text embeddings with human prior knowledge is pivotal for open-vocabulary video action recognition.
Our method not only sets new SOTA performance but also possesses excellent interpretability.
arXiv Detail & Related papers (2023-12-04T02:31:38Z) - FuseCap: Leveraging Large Language Models for Enriched Fused Image
Captions [11.274127953112574]
We propose an automated approach to augmenting existing captions with visual details using "frozen" vision experts.
Our proposed method, FuseCap, fuses the outputs of such vision experts with the original captions using a large language model.
We release this large-scale dataset of enriched image-caption pairs for the community.
arXiv Detail & Related papers (2023-05-28T13:16:03Z) - Generating image captions with external encyclopedic knowledge [1.452875650827562]
We create an end-to-end caption generation system that makes extensive use of image-specific encyclopedic data.
Our approach includes a novel way of using image location to identify relevant open-domain facts in an external knowledge base.
Our system is trained and tested on a new dataset with naturally produced knowledge-rich captions.
arXiv Detail & Related papers (2022-10-10T16:09:21Z) - Retrieval-Augmented Transformer for Image Captioning [51.79146669195357]
We develop an image captioning approach with a kNN memory, with which knowledge can be retrieved from an external corpus to aid the generation process.
Our architecture combines a knowledge retriever based on visual similarities, a differentiable encoder, and a kNN-augmented attention layer to predict tokens.
Experimental results, conducted on the COCO dataset, demonstrate that employing an explicit external memory can aid the generation process and increase caption quality.
arXiv Detail & Related papers (2022-07-26T19:35:49Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
We propose a new model architecture for learning multi-modal neuro-symbolic representations for video captioning.
Our approach uses a dictionary learning-based method of learning relations between videos and their paired text descriptions.
arXiv Detail & Related papers (2020-11-18T20:21:19Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
We present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation.
Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning.
During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences.
arXiv Detail & Related papers (2020-06-21T14:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.