KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction
- URL: http://arxiv.org/abs/2505.23416v1
- Date: Thu, 29 May 2025 13:05:47 GMT
- Title: KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction
- Authors: Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, Hyun Oh Song,
- Abstract summary: Transformer-based large language models (LLMs) cache context as key-value ( KV) pairs during inference.<n>As context length grows, KV cache sizes expand, leading to substantial memory overhead and increased attention latency.<n>This paper introduces KVzip, a query-agnostic KV cache eviction method enabling effective reuse of compressed KV caches across diverse queries.
- Score: 37.489744618357655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based large language models (LLMs) cache context as key-value (KV) pairs during inference. As context length grows, KV cache sizes expand, leading to substantial memory overhead and increased attention latency. This paper introduces KVzip, a query-agnostic KV cache eviction method enabling effective reuse of compressed KV caches across diverse queries. KVzip quantifies the importance of a KV pair using the underlying LLM to reconstruct original contexts from cached KV pairs, subsequently evicting pairs with lower importance. Extensive empirical evaluations demonstrate that KVzip reduces KV cache size by 3-4$\times$ and FlashAttention decoding latency by approximately 2$\times$, with negligible performance loss in question-answering, retrieval, reasoning, and code comprehension tasks. Evaluations include various models such as LLaMA3.1-8B, Qwen2.5-14B, and Gemma3-12B, with context lengths reaching up to 170K tokens. KVzip significantly outperforms existing query-aware KV eviction methods, which suffer from performance degradation even at a 90% cache budget ratio under multi-query scenarios.
Related papers
- R-KV: Redundancy-aware KV Cache Compression for Reasoning Models [77.84539432982307]
We propose Redundancy-aware KV Cache Compression for Reasoning models (R-KV)<n>R-KV preserves nearly 100% of the full KV cache performance using only 10% of the KV cache.<n>Remarkably, R-KV even achieves 105% of full KV cache performance with 16% of the KV cache.
arXiv Detail & Related papers (2025-05-30T02:03:24Z) - DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
We introduce a new KV cache compression method dubbed DBudgetKV.<n>It features an attention-based metric to signal when the remaining KV cache is unlikely to match the full-cache performance, then halting the pruning process.<n>Our method is easy to integrate within LLM inference, not only optimizing memory space, but also showing reduced inference time compared to existing methods.
arXiv Detail & Related papers (2025-02-24T06:33:39Z) - BaKlaVa -- Budgeted Allocation of KV cache for Long-context Inference [6.222836318380985]
BaKlaVa is a method to allocate optimal memory for individual KV-caches across the model.<n>We evaluate our method on LLaMA-3-8B, and Qwen2.5-7B models.
arXiv Detail & Related papers (2025-02-18T04:08:29Z) - SCBench: A KV Cache-Centric Analysis of Long-Context Methods [61.025422435235456]
We introduce SCBench, a benchmark for evaluating long-context methods from a KV cachecentric perspective.<n>We provide an extensive KV cache-centric analysis of eight categories long-context solutions, including Gated Linear RNNs and Mamba-Attention hybrids.<n>Our findings show that sub-O(n) memory methods suffer in multi-turn scenarios, while sparse encoding with O(n) memory and sub-O(n2) pre-filling perform robustly.
arXiv Detail & Related papers (2024-12-13T17:59:52Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
Long context poses significant challenges for inference efficiency.<n>We introduce ClusterKV, which recalls tokens at the granularity of semantic clusters.<n>Experiment results show that ClusterKV attains negligible accuracy loss across various tasks with 32k context lengths.
arXiv Detail & Related papers (2024-12-04T10:58:27Z) - Unifying KV Cache Compression for Large Language Models with LeanKV [28.452123478834803]
Large language models (LLMs) exhibit exceptional performance but incur significant serving costs due to their substantial memory requirements.<n>Existing KV cache compression techniques, such as quantization and pruning, apply uniform treatment to both keys and values, and discard unimportant tokens entirely.<n>We introduce LeanKV, a framework that advances KV cache compression by exploiting three levels of differentiation in the KV cache.
arXiv Detail & Related papers (2024-12-04T08:51:23Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
We propose a plug-and-play method called textit KVSharer, which shares the KV cache between layers to achieve layer-wise compression.
Experiments show that textit KVSharer can reduce KV cache computation by 30%, thereby lowering memory consumption.
We verify that textit KVSharer is compatible with existing intra-layer KV cache compression methods, and combining both can further save memory.
arXiv Detail & Related papers (2024-10-24T08:06:41Z) - KV-Compress: Paged KV-Cache Compression with Variable Compression Rates per Attention Head [0.8158530638728501]
We introduce KV-Compress, a novel compression method that evicts contiguous KV blocks within a PagedAttention framework.
Our method achieves state-of-the-art performance on LongBench for both Mistral-7B-Instruct-v0.2 and Llama-3.1-8B-Instruct while lowering the total number of compressed KVs by 4x.
Evaluations on Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct-FP8 achieve compression rates up to 8x with negligible impact on performance, and up to 64x while retaining over 90% of full-cache performance
arXiv Detail & Related papers (2024-09-30T19:09:13Z) - A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression [13.981807478365452]
Existing approaches to reduce the Key-Value cache size involve either fine-tuning the model to learn a compression strategy or leveraging attention scores to reduce the sequence length.
We find a clear correlation between the $L$ and the attention scores over cached KV pairs, where a low $L$ of a key embedding leads to a high attention score during decoding.
Our experimental results show that this simple strategy can reduce the KV cache size by 50% on language modelling and needle-in-a-haystack tasks and 90% on passkey retrieval tasks without losing accuracy.
arXiv Detail & Related papers (2024-06-17T11:35:16Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [38.732413451399]
Pyramid KV is a novel and effective KV cache compression method.<n>We show that Pyramid KV matches the performance of models with a full KV cache while retaining only 12% of the KV cache.<n>In the Needle-in-a-Haystack experiment, Pyramid KV outperforms competing methods in maintaining long-context comprehension.
arXiv Detail & Related papers (2024-06-04T07:51:30Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
We develop a tuning-free 2bit KV cache quantization algorithm named KIVI.
KIVI can enable Llama, Falcon, and Mistral models to maintain almost the same quality while using $mathbf2.6times$ less peak memory.
arXiv Detail & Related papers (2024-02-05T06:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.