VITON-DRR: Details Retention Virtual Try-on via Non-rigid Registration
- URL: http://arxiv.org/abs/2505.23439v1
- Date: Thu, 29 May 2025 13:38:21 GMT
- Title: VITON-DRR: Details Retention Virtual Try-on via Non-rigid Registration
- Authors: Ben Li, Minqi Li, Jie Ren, Kaibing Zhang,
- Abstract summary: This paper proposes a detail retention virtual try-on method via accurate non-rigid registration (VITON-DRR) for diverse human poses.<n> Specifically, we reconstruct a human semantic segmentation using a dual-pyramid-structured feature extractor.<n>Then, a novel Deformation Module is designed for extracting the cloth key points and warping them through an accurate non-rigid registration algorithm.
- Score: 5.465426769865638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based virtual try-on aims to fit a target garment to a specific person image and has attracted extensive research attention because of its huge application potential in the e-commerce and fashion industries. To generate high-quality try-on results, accurately warping the clothing item to fit the human body plays a significant role, as slight misalignment may lead to unrealistic artifacts in the fitting image. Most existing methods warp the clothing by feature matching and thin-plate spline (TPS). However, it often fails to preserve clothing details due to self-occlusion, severe misalignment between poses, etc. To address these challenges, this paper proposes a detail retention virtual try-on method via accurate non-rigid registration (VITON-DRR) for diverse human poses. Specifically, we reconstruct a human semantic segmentation using a dual-pyramid-structured feature extractor. Then, a novel Deformation Module is designed for extracting the cloth key points and warping them through an accurate non-rigid registration algorithm. Finally, the Image Synthesis Module is designed to synthesize the deformed garment image and generate the human pose information adaptively. {Compared with} traditional methods, the proposed VITON-DRR can make the deformation of fitting images more accurate and retain more garment details. The experimental results demonstrate that the proposed method performs better than state-of-the-art methods.
Related papers
- Limb-Aware Virtual Try-On Network with Progressive Clothing Warping [64.84181064722084]
Image-based virtual try-on aims to transfer an in-shop clothing image to a person image.<n>Most existing methods adopt a single global deformation to perform clothing warping directly.<n>We propose Limb-aware Virtual Try-on Network named PL-VTON, which performs fine-grained clothing warping progressively.
arXiv Detail & Related papers (2025-03-18T09:52:41Z) - IMAGDressing-v1: Customizable Virtual Dressing [58.44155202253754]
IMAGDressing-v1 is a virtual dressing task that generates freely editable human images with fixed garments and optional conditions.
IMAGDressing-v1 incorporates a garment UNet that captures semantic features from CLIP and texture features from VAE.
We present a hybrid attention module, including a frozen self-attention and a trainable cross-attention, to integrate garment features from the garment UNet into a frozen denoising UNet.
arXiv Detail & Related papers (2024-07-17T16:26:30Z) - Improving Diffusion Models for Authentic Virtual Try-on in the Wild [53.96244595495942]
This paper considers image-based virtual try-on, which renders an image of a person wearing a curated garment.
We propose a novel diffusion model that improves garment fidelity and generates authentic virtual try-on images.
We present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity.
arXiv Detail & Related papers (2024-03-08T08:12:18Z) - A Two-stage Personalized Virtual Try-on Framework with Shape Control and
Texture Guidance [7.302929117437442]
This paper proposes a brand new personalized virtual try-on model (PE-VITON), which uses the two stages (shape control and texture guidance) to decouple the clothing attributes.
The proposed model can effectively solve the problems of weak reduction of clothing folds, poor generation effect under complex human posture, blurred edges of clothing, and unclear texture styles in traditional try-on methods.
arXiv Detail & Related papers (2023-12-24T13:32:55Z) - StableVITON: Learning Semantic Correspondence with Latent Diffusion
Model for Virtual Try-On [35.227896906556026]
Given a clothing image and a person image, an image-based virtual try-on aims to generate a customized image that appears natural and accurately reflects the characteristics of the clothing image.
In this work, we aim to expand the applicability of the pre-trained diffusion model so that it can be utilized independently for the virtual try-on task.
Our proposed zero cross-attention blocks not only preserve the clothing details by learning the semantic correspondence but also generate high-fidelity images by utilizing the inherent knowledge of the pre-trained model in the warping process.
arXiv Detail & Related papers (2023-12-04T08:27:59Z) - Arbitrary Virtual Try-On Network: Characteristics Preservation and
Trade-off between Body and Clothing [85.74977256940855]
We propose an Arbitrary Virtual Try-On Network (AVTON) for all-type clothes.
AVTON can synthesize realistic try-on images by preserving and trading off characteristics of the target clothes and the reference person.
Our approach can achieve better performance compared with the state-of-the-art virtual try-on methods.
arXiv Detail & Related papers (2021-11-24T08:59:56Z) - Towards Scalable Unpaired Virtual Try-On via Patch-Routed
Spatially-Adaptive GAN [66.3650689395967]
We propose a texture-preserving end-to-end network, the PAtch-routed SpaTially-Adaptive GAN (PASTA-GAN), that facilitates real-world unpaired virtual try-on.
To disentangle the style and spatial information of each garment, PASTA-GAN consists of an innovative patch-routed disentanglement module.
arXiv Detail & Related papers (2021-11-20T08:36:12Z) - SPG-VTON: Semantic Prediction Guidance for Multi-pose Virtual Try-on [27.870740623131816]
Image-based virtual try-on is challenging in fitting a target in-shop clothes into a reference person under diverse human poses.
We propose an end-to-end Semantic Prediction Guidance multi-pose Virtual Try-On Network (SPG-VTON)
We evaluate the proposed method on the most massive multi-pose dataset (MPV) and the DeepFashion dataset.
arXiv Detail & Related papers (2021-08-03T15:40:50Z) - Shape Controllable Virtual Try-on for Underwear Models [0.0]
We propose a Shape Controllable Virtual Try-On Network (SC-VTON) to dress clothing for underwear models.
SC-VTON integrates information of model and clothing to generate warped clothing image.
Our method can generate high-resolution results with detailed textures.
arXiv Detail & Related papers (2021-07-28T04:01:01Z) - Toward Accurate and Realistic Outfits Visualization with Attention to
Details [10.655149697873716]
We propose Outfit Visualization Net to capture important visual details necessary for commercial applications.
OVNet consists of 1) a semantic layout generator and 2) an image generation pipeline using multiple coordinated warps.
An interactive interface powered by this method has been deployed on fashion e-commerce websites and received overwhelmingly positive feedback.
arXiv Detail & Related papers (2021-06-11T19:53:34Z) - Deep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction
from Single Images [50.34202789543989]
Deep Fashion3D is the largest collection to date of 3D garment models.
It provides rich annotations including 3D feature lines, 3D body pose and the corresponded multi-view real images.
A novel adaptable template is proposed to enable the learning of all types of clothing in a single network.
arXiv Detail & Related papers (2020-03-28T09:20:04Z) - Towards Photo-Realistic Virtual Try-On by Adaptively
Generating$\leftrightarrow$Preserving Image Content [85.24260811659094]
We propose a novel visual try-on network, namely Adaptive Content Generating and Preserving Network (ACGPN)
ACGPN first predicts semantic layout of the reference image that will be changed after try-on.
Second, a clothes warping module warps clothing images according to the generated semantic layout.
Third, an inpainting module for content fusion integrates all information (e.g. reference image, semantic layout, warped clothes) to adaptively produce each semantic part of human body.
arXiv Detail & Related papers (2020-03-12T15:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.