TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning
- URL: http://arxiv.org/abs/2505.23475v1
- Date: Thu, 29 May 2025 14:26:54 GMT
- Title: TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning
- Authors: Ron Shapira Weber, Shahar Ben Ishay, Andrey Lavrinenko, Shahaf E. Finder, Oren Freifeld,
- Abstract summary: TimePoint is a self-supervised method for fast and scalable alignment of time series.<n>It is inspired by 2D keypoint detection but carefully adapted to the unique challenges of 1D signals.<n>TimePoint consistently achieves faster and more accurate alignments than standard DTW.
- Score: 9.099291890744201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fast and scalable alignment of time series is a fundamental challenge in many domains. The standard solution, Dynamic Time Warping (DTW), struggles with poor scalability and sensitivity to noise. We introduce TimePoint, a self-supervised method that dramatically accelerates DTW-based alignment while typically improving alignment accuracy by learning keypoints and descriptors from synthetic data. Inspired by 2D keypoint detection but carefully adapted to the unique challenges of 1D signals, TimePoint leverages efficient 1D diffeomorphisms, which effectively model nonlinear time warping, to generate realistic training data. This approach, along with fully convolutional and wavelet convolutional architectures, enables the extraction of informative keypoints and descriptors. Applying DTW to these sparse representations yield major speedups and typically higher alignment accuracy than standard DTW applied to the full signals. TimePoint demonstrates strong generalization to real-world time series when trained solely on synthetic data, and further improves with fine-tuning on real data. Extensive experiments demonstrate that TimePoint consistently achieves faster and more accurate alignments than standard DTW, making it a scalable solution for time-series analysis. Our code is available at https://github.com/BGU-CS-VIL/TimePoint
Related papers
- SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++ is a novel framework that integrates pretraining and downstream tasks using consecutive camera pairs.<n>We show that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions.<n>With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving.
arXiv Detail & Related papers (2025-03-25T17:59:57Z) - Deep Time Warping for Multiple Time Series Alignment [0.0]
Time Series Alignment is a critical task in signal processing with numerous real-world applications.<n>This paper introduces a novel approach for Multiple Time Series Alignment leveraging Deep Learning techniques.
arXiv Detail & Related papers (2025-02-22T18:55:51Z) - SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
We show that learning based methods can, even based on synthetic data, significantly outperform GCC-PHAT on novel real world data.
We provide our trained model, SONNET, which is runnable in real-time and works on novel data out of the box for many real data applications.
arXiv Detail & Related papers (2024-11-20T10:23:21Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement [64.11385310305612]
We present a novel model for Tracking Any Point (TAP) that effectively tracks any queried point on any physical surface throughout a video sequence.
Our approach employs two stages: (1) a matching stage, which independently locates a suitable candidate point match for the query point on every other frame, and (2) a refinement stage, which updates both the trajectory and query features based on local correlations.
The resulting model surpasses all baseline methods by a significant margin on the TAP-Vid benchmark, as demonstrated by an approximate 20% absolute average Jaccard (AJ) improvement on DAVIS.
arXiv Detail & Related papers (2023-06-14T17:07:51Z) - OTW: Optimal Transport Warping for Time Series [75.69837166816501]
Dynamic Time Warping (DTW) has become the pragmatic choice for measuring distance between time series.
It suffers from unavoidable quadratic time complexity when the optimal alignment matrix needs to be computed exactly.
We introduce a new metric for time series data based on the Optimal Transport framework, called Optimal Transport Warping (OTW)
arXiv Detail & Related papers (2023-06-01T12:45:00Z) - Deep Declarative Dynamic Time Warping for End-to-End Learning of
Alignment Paths [54.53208538517505]
This paper addresses learning end-to-end models for time series data that include a temporal alignment step via dynamic time warping (DTW)
We propose a DTW layer based around bi-level optimisation and deep declarative networks, which we name DecDTW.
We show that this property is particularly useful for applications where downstream loss functions are defined on the optimal alignment path itself.
arXiv Detail & Related papers (2023-03-19T21:58:37Z) - TimeMAE: Self-Supervised Representations of Time Series with Decoupled
Masked Autoencoders [55.00904795497786]
We propose TimeMAE, a novel self-supervised paradigm for learning transferrable time series representations based on transformer networks.
The TimeMAE learns enriched contextual representations of time series with a bidirectional encoding scheme.
To solve the discrepancy issue incurred by newly injected masked embeddings, we design a decoupled autoencoder architecture.
arXiv Detail & Related papers (2023-03-01T08:33:16Z) - CPGNet: Cascade Point-Grid Fusion Network for Real-Time LiDAR Semantic
Segmentation [8.944151935020992]
We propose Cascade Point-Grid Fusion Network (CPGNet), which ensures both effectiveness and efficiency.
CPGNet without ensemble models or TTA is comparable with the state-of-the-art RPVNet, while it runs 4.7 times faster.
arXiv Detail & Related papers (2022-04-21T06:56:30Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
We formulate the problem as estimation of point-wise trajectories (i.e., smooth curves)
We propose IDEA-Net, an end-to-end deep learning framework, which disentangles the problem under the assistance of the explicitly learned temporal consistency.
We demonstrate the effectiveness of our method on various point cloud sequences and observe large improvement over state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2022-03-22T10:14:08Z) - DTWSSE: Data Augmentation with a Siamese Encoder for Time Series [8.019203034348083]
We propose a DTW-based synthetic minority oversampling technique using siamese encoder for named DTWSSE.
In order to reasonably measure the distance of the time series, DTW, which has been verified to be an effective method, is employed as the distance metric.
The encoder is a Neural Network for mapping the time series data from the DTW hidden space to the Euclidean deep feature space, and the decoder is used to map the deep feature space back to the DTW hidden space.
arXiv Detail & Related papers (2021-08-23T01:46:24Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - Time Series Data Augmentation for Neural Networks by Time Warping with a
Discriminative Teacher [17.20906062729132]
We propose a novel time series data augmentation called guided warping.
guided warping exploits the element alignment properties of Dynamic Time Warping (DTW) and shapeDTW.
We evaluate the method on all 85 datasets in the 2015 UCR Time Series Archive with a deep convolutional neural network (CNN) and a recurrent neural network (RNN)
arXiv Detail & Related papers (2020-04-19T06:33:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.