TRAP: Targeted Redirecting of Agentic Preferences
- URL: http://arxiv.org/abs/2505.23518v1
- Date: Thu, 29 May 2025 14:57:16 GMT
- Title: TRAP: Targeted Redirecting of Agentic Preferences
- Authors: Hangoo Kang, Jehyeok Yeon, Gagandeep Singh,
- Abstract summary: We introduce TRAP, a generative adversarial framework that manipulates the agent's decision-making using diffusion-based semantic injections.<n>Our method combines negative prompt-based degradation with positive semantic optimization, guided by a Siamese semantic network and layout-aware spatial masking.<n>TRAP achieves a 100% attack success rate on leading models, including LLaVA-34B, Gemma3, and Mistral-3.1.
- Score: 3.6293956720749425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous agentic AI systems powered by vision-language models (VLMs) are rapidly advancing toward real-world deployment, yet their cross-modal reasoning capabilities introduce new attack surfaces for adversarial manipulation that exploit semantic reasoning across modalities. Existing adversarial attacks typically rely on visible pixel perturbations or require privileged model or environment access, making them impractical for stealthy, real-world exploitation. We introduce TRAP, a generative adversarial framework that manipulates the agent's decision-making using diffusion-based semantic injections. Our method combines negative prompt-based degradation with positive semantic optimization, guided by a Siamese semantic network and layout-aware spatial masking. Without requiring access to model internals, TRAP produces visually natural images yet induces consistent selection biases in agentic AI systems. We evaluate TRAP on the Microsoft Common Objects in Context (COCO) dataset, building multi-candidate decision scenarios. Across these scenarios, TRAP achieves a 100% attack success rate on leading models, including LLaVA-34B, Gemma3, and Mistral-3.1, significantly outperforming baselines such as SPSA, Bandit, and standard diffusion approaches. These results expose a critical vulnerability: Autonomous agents can be consistently misled through human-imperceptible cross-modal manipulations. These findings highlight the need for defense strategies beyond pixel-level robustness to address semantic vulnerabilities in cross-modal decision-making.
Related papers
- Attractive Metadata Attack: Inducing LLM Agents to Invoke Malicious Tools [10.086284534400658]
Large language model (LLM) agents have demonstrated remarkable capabilities in complex reasoning and decision-making by leveraging external tools.<n>We identify this as a new and stealthy threat surface that allows malicious tools to be preferentially selected by LLM agents.<n>We propose a black-box in-context learning framework that generates highly attractive but syntactically and semantically valid tool metadata.
arXiv Detail & Related papers (2025-08-04T06:38:59Z) - Exploiting Edge Features for Transferable Adversarial Attacks in Distributed Machine Learning [54.26807397329468]
This work explores a previously overlooked vulnerability in distributed deep learning systems.<n>An adversary who intercepts the intermediate features transmitted between them can still pose a serious threat.<n>We propose an exploitation strategy specifically designed for distributed settings.
arXiv Detail & Related papers (2025-07-09T20:09:00Z) - Backdoor Attack on Vision Language Models with Stealthy Semantic Manipulation [32.24294112337828]
BadSem is a data poisoning attack that injects backdoors by deliberately misaligning image-text pairs during training.<n>Our experiments show that BadSem achieves over 98% average ASR, generalizes well to out-of-distribution datasets, and can transfer across poisoning modalities.<n>Our findings highlight the urgent need to address semantic vulnerabilities in Vision Language Models for their safer deployment.
arXiv Detail & Related papers (2025-06-08T16:40:40Z) - DrunkAgent: Stealthy Memory Corruption in LLM-Powered Recommender Agents [28.294322726282896]
Large language model (LLM)-powered agents are increasingly used in recommender systems (RSs) to achieve personalized behavior modeling.<n>This paper presents the first systematic investigation of memory-based vulnerabilities in LLM-powered recommender agents.<n>We propose a novel black-box attack framework named DrunkAgent, which crafts semantically meaningful adversarial triggers.
arXiv Detail & Related papers (2025-03-31T07:35:40Z) - Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
This paper explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM)<n>To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm.
arXiv Detail & Related papers (2024-10-26T15:04:04Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
Latent Ensemble Attack [11.764601181046496]
Deepfakes, malicious visual contents created by generative models, pose an increasingly harmful threat to society.
To proactively mitigate deepfake damages, recent studies have employed adversarial perturbation to disrupt deepfake model outputs.
We propose a simple yet effective disruption method called Latent Ensemble ATtack (LEAT), which attacks the independent latent encoding process.
arXiv Detail & Related papers (2023-07-04T07:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.