DRO: A Python Library for Distributionally Robust Optimization in Machine Learning
- URL: http://arxiv.org/abs/2505.23565v1
- Date: Thu, 29 May 2025 15:39:12 GMT
- Title: DRO: A Python Library for Distributionally Robust Optimization in Machine Learning
- Authors: Jiashuo Liu, Tianyu Wang, Henry Lam, Hongseok Namkoong, Jose Blanchet,
- Abstract summary: We introduce dro, an open-source Python library for distributionally robust optimization (DRO)<n>dro implements 14 DRO formulations and 9 backbone models, enabling 79 distinct DRO methods.<n>dro is compatible with both scikit-learn and PyTorch.
- Score: 20.33236744470794
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce dro, an open-source Python library for distributionally robust optimization (DRO) for regression and classification problems. The library implements 14 DRO formulations and 9 backbone models, enabling 79 distinct DRO methods. Furthermore, dro is compatible with both scikit-learn and PyTorch. Through vectorization and optimization approximation techniques, dro reduces runtime by 10x to over 1000x compared to baseline implementations on large-scale datasets. Comprehensive documentation is available at https://python-dro.org.
Related papers
- $\texttt{skwdro}$: a library for Wasserstein distributionally robust machine learning [6.940992962425166]
skwdro is a Python library for training robust machine learning models.
It features both scikit-learn compatible estimators for popular objectives, as well as a wrapper for PyTorch modules.
arXiv Detail & Related papers (2024-10-28T17:16:00Z) - Mixture-Models: a one-stop Python Library for Model-based Clustering
using various Mixture Models [4.60168321737677]
textttMixture-Models is an open-source Python library for fitting Gaussian Mixture Models (GMM) and their variants.
It streamlines the implementation and analysis of these models using various first/second order optimization routines.
The library provides user-friendly model evaluation tools, such as BIC, AIC, and log-likelihood estimation.
arXiv Detail & Related papers (2024-02-08T19:34:24Z) - eipy: An Open-Source Python Package for Multi-modal Data Integration using Heterogeneous Ensembles [2.957103424179249]
eipy is an open-source Python package for developing effective, multi-modal heterogeneous ensembles for classification.<n>eipy provides both a rigorous, and user-friendly framework for comparing and selecting the best-performing data integration and predictive modeling methods.
arXiv Detail & Related papers (2024-01-17T20:07:47Z) - PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization [16.25015003901218]
We present an open-source pure-Python library called PyPop7 for black-box optimization (BBO)
The design goal of PyPop7 is to provide a unified API and elegant implementations for BBO.
arXiv Detail & Related papers (2022-12-12T01:38:49Z) - DADApy: Distance-based Analysis of DAta-manifolds in Python [51.37841707191944]
DADApy is a python software package for analysing and characterising high-dimensional data.
It provides methods for estimating the intrinsic dimension and the probability density, for performing density-based clustering and for comparing different distance metrics.
arXiv Detail & Related papers (2022-05-04T08:41:59Z) - PyGOD: A Python Library for Graph Outlier Detection [56.33769221859135]
PyGOD is an open-source library for detecting outliers in graph data.
It supports a wide array of leading graph-based methods for outlier detection.
PyGOD is released under a BSD 2-Clause license at https://pygod.org and at the Python Package Index (PyPI)
arXiv Detail & Related papers (2022-04-26T06:15:21Z) - PyHHMM: A Python Library for Heterogeneous Hidden Markov Models [63.01207205641885]
PyHHMM is an object-oriented Python implementation of Heterogeneous-Hidden Markov Models (HHMMs)
PyHHMM emphasizes features not supported in similar available frameworks: a heterogeneous observation model, missing data inference, different model order selection criterias, and semi-supervised training.
PyHHMM relies on the numpy, scipy, scikit-learn, and seaborn Python packages, and is distributed under the Apache-2.0 License.
arXiv Detail & Related papers (2022-01-12T07:32:36Z) - Scikit-dimension: a Python package for intrinsic dimension estimation [58.8599521537]
This technical note introduces textttscikit-dimension, an open-source Python package for intrinsic dimension estimation.
textttscikit-dimension package provides a uniform implementation of most of the known ID estimators based on scikit-learn application programming interface.
We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation in real-life and synthetic data.
arXiv Detail & Related papers (2021-09-06T16:46:38Z) - MRCpy: A Library for Minimax Risk Classifiers [10.380882297891272]
Python library, MRCpy, implements minimax risk classifiers (MRCs) based on the robust risk minimization (RRM) approach.
MRCpy follows the standards of popular Python libraries, such as scikit-learn, facilitating readability and easy usage together with a seamless integration with other libraries.
arXiv Detail & Related papers (2021-08-04T10:31:20Z) - Picasso: A Sparse Learning Library for High Dimensional Data Analysis in
R and Python [77.33905890197269]
We describe a new library which implements a unified pathwise coordinate optimization for a variety of sparse learning problems.
The library is coded in R++ and has user-friendly sparse experiments.
arXiv Detail & Related papers (2020-06-27T02:39:24Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
This paper proposes a Python-based Optimum-Path Forest framework, denoted as OPFython.
As OPFython is a Python-based library, it provides a more friendly environment and a faster prototyping workspace than the C language.
arXiv Detail & Related papers (2020-01-28T15:46:19Z) - Multi-layer Optimizations for End-to-End Data Analytics [71.05611866288196]
We introduce Iterative Functional Aggregate Queries (IFAQ), a framework that realizes an alternative approach.
IFAQ treats the feature extraction query and the learning task as one program given in the IFAQ's domain-specific language.
We show that a Scala implementation of IFAQ can outperform mlpack, Scikit, and specialization by several orders of magnitude for linear regression and regression tree models over several relational datasets.
arXiv Detail & Related papers (2020-01-10T16:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.