Comparing the Effects of Persistence Barcodes Aggregation and Feature Concatenation on Medical Imaging
- URL: http://arxiv.org/abs/2505.23637v2
- Date: Wed, 04 Jun 2025 14:50:55 GMT
- Title: Comparing the Effects of Persistence Barcodes Aggregation and Feature Concatenation on Medical Imaging
- Authors: Dashti A. Ali, Richard K. G. Do, William R. Jarnagin, Aras T. Asaad, Amber L. Simpson,
- Abstract summary: In medical image analysis, feature engineering plays an important role in the design and performance of machine learning models.<n>We store persistent topological and geometrical features in the form of the persistence barcode.<n>We compare the effects of two approaches on the performance of classification models.
- Score: 0.9524546889479364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In medical image analysis, feature engineering plays an important role in the design and performance of machine learning models. Persistent homology (PH), from the field of topological data analysis (TDA), demonstrates robustness and stability to data perturbations and addresses the limitation from traditional feature extraction approaches where a small change in input results in a large change in feature representation. Using PH, we store persistent topological and geometrical features in the form of the persistence barcode whereby large bars represent global topological features and small bars encapsulate geometrical information of the data. When multiple barcodes are computed from 2D or 3D medical images, two approaches can be used to construct the final topological feature vector in each dimension: aggregating persistence barcodes followed by featurization or concatenating topological feature vectors derived from each barcode. In this study, we conduct a comprehensive analysis across diverse medical imaging datasets to compare the effects of the two aforementioned approaches on the performance of classification models. The results of this analysis indicate that feature concatenation preserves detailed topological information from individual barcodes, yields better classification performance and is therefore a preferred approach when conducting similar experiments.
Related papers
- Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - Discrete transforms of quantized persistence diagrams [0.5249805590164902]
We introduce Qupid, a novel and simple method for vectorizing persistence diagrams.
Key features are the choice of log-scaled grids that emphasize information contained near the diagonal in persistence diagrams.
We conduct an in-depth experimental analysis of Qupid, showing that the simplicity of our method results in very low computational costs.
arXiv Detail & Related papers (2023-12-28T16:11:11Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation [35.34932609930401]
This work proposes the PULASki method as a computationally efficient generative tool for biomedical image segmentation.<n>It captures variability in expert annotations, even in small datasets.<n>Our experiments are also the first to present a comparative study of the computationally feasible segmentation of complex geometries using 3D patches and the traditional use of 2D slices.
arXiv Detail & Related papers (2023-12-25T10:31:22Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
This study proposes a simple approach of adapting 2D networks with an intermediate feature representation for processing 3D images.
We show on all 3D MedMNIST datasets as benchmark and two real-world datasets consisting of several hundred high-resolution CT or MRI scans that our approach performs on par with existing methods.
arXiv Detail & Related papers (2023-07-13T08:27:09Z) - Combining Variational Autoencoders and Physical Bias for Improved
Microscopy Data Analysis [0.0]
We present a physics augmented machine learning method which disentangles factors of variability within the data.
Our method is applied to various materials, including NiO-LSMO, BiFeO3, and graphene.
The results demonstrate the effectiveness of our approach in extracting meaningful information from large volumes of imaging data.
arXiv Detail & Related papers (2023-02-08T17:35:38Z) - The geometry of hidden representations of large transformer models [43.16765170255552]
Large transformers are powerful architectures used for self-supervised data analysis across various data types.
We show that the semantic structure of the dataset emerges from a sequence of transformations between one representation and the next.
We show that the semantic information of the dataset is better expressed at the end of the first peak, and this phenomenon can be observed across many models trained on diverse datasets.
arXiv Detail & Related papers (2023-02-01T07:50:26Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Barcode Method for Generative Model Evaluation driven by Topological
Data Analysis [0.0]
In this study, we propose an algorithm named barcode, which is inspired by the topological data analysis.
In extensive experiments on real-world datasets as well as theoretical approach on high-dimensional normal samples, it was found that the 'usual' normality assumption of embedded vectors has several drawbacks.
arXiv Detail & Related papers (2021-06-04T02:07:07Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Longitudinal Variational Autoencoder [1.4680035572775534]
A common approach to analyse high-dimensional data that contains missing values is to learn a low-dimensional representation using variational autoencoders (VAEs)
Standard VAEs assume that the learnt representations are i.i.d., and fail to capture the correlations between the data samples.
We propose the Longitudinal VAE (L-VAE), that uses a multi-output additive Gaussian process (GP) prior to extend the VAE's capability to learn structured low-dimensional representations.
Our approach can simultaneously accommodate both time-varying shared and random effects, produce structured low-dimensional representations
arXiv Detail & Related papers (2020-06-17T10:30:14Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.