AMBER: Adaptive Mesh Generation by Iterative Mesh Resolution Prediction
- URL: http://arxiv.org/abs/2505.23663v1
- Date: Thu, 29 May 2025 17:10:44 GMT
- Title: AMBER: Adaptive Mesh Generation by Iterative Mesh Resolution Prediction
- Authors: Niklas Freymuth, Tobias Würth, Nicolas Schreiber, Balazs Gyenes, Andreas Boltres, Johannes Mitsch, Aleksandar Taranovic, Tai Hoang, Philipp Dahlinger, Philipp Becker, Luise Kärger, Gerhard Neumann,
- Abstract summary: We propose Adaptive Meshing By Expert Reconstruction (AMBER), a supervised learning approach to mesh adaptation.<n>AMBER iteratively predicts the sizing field, and uses this prediction to produce a new intermediate mesh using an out-of-the-box mesh generator.<n>We evaluate AMBER on 2D and 3D geometries, datasets including classical physics problems, mechanical components, and real-world industrial designs with human expert meshes.
- Score: 44.21926961255011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The cost and accuracy of simulating complex physical systems using the Finite Element Method (FEM) scales with the resolution of the underlying mesh. Adaptive meshes improve computational efficiency by refining resolution in critical regions, but typically require task-specific heuristics or cumbersome manual design by a human expert. We propose Adaptive Meshing By Expert Reconstruction (AMBER), a supervised learning approach to mesh adaptation. Starting from a coarse mesh, AMBER iteratively predicts the sizing field, i.e., a function mapping from the geometry to the local element size of the target mesh, and uses this prediction to produce a new intermediate mesh using an out-of-the-box mesh generator. This process is enabled through a hierarchical graph neural network, and relies on data augmentation by automatically projecting expert labels onto AMBER-generated data during training. We evaluate AMBER on 2D and 3D datasets, including classical physics problems, mechanical components, and real-world industrial designs with human expert meshes. AMBER generalizes to unseen geometries and consistently outperforms multiple recent baselines, including ones using Graph and Convolutional Neural Networks, and Reinforcement Learning-based approaches.
Related papers
- Private Training & Data Generation by Clustering Embeddings [74.00687214400021]
Differential privacy (DP) provides a robust framework for protecting individual data.<n>We introduce a novel principled method for DP synthetic image embedding generation.<n> Empirically, a simple two-layer neural network trained on synthetically generated embeddings achieves state-of-the-art (SOTA) classification accuracy.
arXiv Detail & Related papers (2025-06-20T00:17:14Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations [49.173541207550485]
Adaptive Meshing By Expert Reconstruction (AMBER) is an imitation learning problem.
AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh.
We experimentally validate AMBER on 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.
arXiv Detail & Related papers (2024-06-20T10:01:22Z) - Bayesian Mesh Optimization for Graph Neural Networks to Enhance Engineering Performance Prediction [1.6574413179773761]
In engineering design, surrogate models are widely employed to replace computationally expensive simulations.
We propose a Bayesian graph neural network (GNN) framework for a 3D deep-learning-based surrogate model.
Our framework determines the optimal size of mesh elements through Bayesian optimization, resulting in a high-accuracy surrogate model.
arXiv Detail & Related papers (2024-06-04T06:27:48Z) - Conformal Predictions Enhanced Expert-guided Meshing with Graph Neural
Networks [8.736819316856748]
This paper presents a machine learning-based scheme that utilize Graph Neural Networks (GNN) and expert guidance to automatically generate CFD meshes for aircraft models.
We introduce a new 3D segmentation algorithm that outperforms two state-of-the-art models, PointNet++ and PointMLP, for surface classification.
We also present a novel approach to project predictions from 3D mesh segmentation models to CAD surfaces using the conformal predictions method.
arXiv Detail & Related papers (2023-08-14T14:39:13Z) - Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
We propose a neural network weight encoding method for network property prediction.<n>Our approach is capable of encoding neural networks in a model zoo of mixed architecture.<n>We introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture.
arXiv Detail & Related papers (2023-05-26T04:34:28Z) - An Improved Structured Mesh Generation Method Based on Physics-informed
Neural Networks [13.196871939441273]
As numerical algorithms become more efficient and computers become more powerful, the percentage of time devoted to mesh generation becomes higher.
In this paper, we present an improved structured mesh generation method.
The method formulates the meshing problem as a global optimization problem related to a physics-informed neural network.
arXiv Detail & Related papers (2022-10-18T02:45:14Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z) - MeshingNet: A New Mesh Generation Method based on Deep Learning [4.230005855201131]
We introduce a novel approach to automatic unstructured mesh generation using machine learning to predict an optimal finite element mesh for a previously unseen problem.
The framework that we have developed is based around training an artificial neural network (ANN) to guide standard mesh generation software.
arXiv Detail & Related papers (2020-04-15T11:29:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.