From Connectivity to Autonomy: The Dawn of Self-Evolving Communication Systems
- URL: http://arxiv.org/abs/2505.23710v1
- Date: Thu, 29 May 2025 17:45:02 GMT
- Title: From Connectivity to Autonomy: The Dawn of Self-Evolving Communication Systems
- Authors: Zeinab Nezami, Syed Danial Ali Shah, Maryam Hafeez, Karim Djemame, Syed Ali Raza Zaidi,
- Abstract summary: This paper envisions 6G as a self-evolving telecom ecosystem, where AI-driven intelligence enables dynamic adaptation beyond static connectivity.<n>We explore the key enablers of autonomous communication systems, spanning reconfigurable infrastructure, adaptive networked and intelligent network functions.<n>Our findings emphasize the potential for improved real-time decision-making, optimizing efficiency, and reducing latency in control systems.
- Score: 0.37282630026096586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper envisions 6G as a self-evolving telecom ecosystem, where AI-driven intelligence enables dynamic adaptation beyond static connectivity. We explore the key enablers of autonomous communication systems, spanning reconfigurable infrastructure, adaptive middleware, and intelligent network functions, alongside multi-agent collaboration for distributed decision-making. We explore how these methodologies align with emerging industrial IoT frameworks, ensuring seamless integration within digital manufacturing processes. Our findings emphasize the potential for improved real-time decision-making, optimizing efficiency, and reducing latency in networked control systems. The discussion addresses ethical challenges, research directions, and standardization efforts, concluding with a technology stack roadmap to guide future developments. By leveraging state-of-the-art 6G network management techniques, this research contributes to the next generation of intelligent automation solutions, bridging the gap between theoretical advancements and real-world industrial applications.
Related papers
- AI Flow: Perspectives, Scenarios, and Approaches [51.38621621775711]
We introduce AI Flow, a framework that integrates cutting-edge IT and CT advancements.<n>First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters.<n>Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features.<n>Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow.
arXiv Detail & Related papers (2025-06-14T12:43:07Z) - From Turbulence to Tranquility: AI-Driven Low-Altitude Network [17.660082508775957]
Low Altitude Economy (LAE) networks own transformative potential in urban mobility, emergency response, and aerial logistics.<n>These networks face significant challenges in spectrum management, interference mitigation, and real-time coordination across dynamic and resource-constrained environments.<n>This study explores three core elements for enabling intelligent LAE networks as follows machine learning-based spectrum sensing and coexistence, artificial intelligence (AI)-optimized resource allocation and trajectory planning, and testbed-driven validation and standardization.
arXiv Detail & Related papers (2025-06-02T07:12:44Z) - Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - From Autonomous Agents to Integrated Systems, A New Paradigm: Orchestrated Distributed Intelligence [0.0]
We introduce the concept of Orchestrated Distributed Intelligence (ODI)<n>ODI reconceptualizes AI as cohesive, orchestrated networks that work in tandem with human expertise.<n>Our work outlines key theoretical implications and presents a practical roadmap for future research and enterprise innovation.
arXiv Detail & Related papers (2025-03-17T22:21:25Z) - Large-Scale AI in Telecom: Charting the Roadmap for Innovation, Scalability, and Enhanced Digital Experiences [212.5544743797899]
Large Telecom Models (LTMs) are tailored AI models designed to address the complex challenges faced by modern telecom networks.<n>The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization.
arXiv Detail & Related papers (2025-03-06T07:53:24Z) - Toward Agentic AI: Generative Information Retrieval Inspired Intelligent Communications and Networking [87.82985288731489]
Agentic AI has emerged as a key paradigm for intelligent communications and networking.<n>This article emphasizes the role of knowledge acquisition, processing, and retrieval in agentic AI for telecom systems.
arXiv Detail & Related papers (2025-02-24T06:02:25Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.<n>We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.<n>The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - Rethinking Strategic Mechanism Design In The Age Of Large Language Models: New Directions For Communication Systems [1.0468715529145969]
This paper explores the application of large language models (LLMs) in designing strategic mechanisms for specific purposes in communication networks.<n>We propose leveraging LLMs to automate or semi-automate the process of strategic mechanism design, from intent specification to final formulation.
arXiv Detail & Related papers (2024-11-30T14:32:48Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6G will revolutionize the evolution of wireless from "connected things" to "connected intelligence"
Deep learning and big data analytics based AI systems require tremendous computation and communication resources.
edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence.
arXiv Detail & Related papers (2021-11-24T11:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.