Read Your Own Mind: Reasoning Helps Surface Self-Confidence Signals in LLMs
- URL: http://arxiv.org/abs/2505.23845v1
- Date: Wed, 28 May 2025 17:01:30 GMT
- Title: Read Your Own Mind: Reasoning Helps Surface Self-Confidence Signals in LLMs
- Authors: Jakub Podolak, Rajeev Verma,
- Abstract summary: We study the source of uncertainty in DeepSeek R1-32B by analyzing its self-reported verbal confidence on question answering (QA) tasks.<n>We show that granting DeepSeek the budget to explore its distribution by forcing a long chain-of-thought before the final answer greatly improves its verbal score effectiveness.
- Score: 3.2228025627337864
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We study the source of uncertainty in DeepSeek R1-32B by analyzing its self-reported verbal confidence on question answering (QA) tasks. In the default answer-then-confidence setting, the model is regularly over-confident, whereas semantic entropy - obtained by sampling many responses - remains reliable. We hypothesize that this is because of semantic entropy's larger test-time compute, which lets us explore the model's predictive distribution. We show that granting DeepSeek the budget to explore its distribution by forcing a long chain-of-thought before the final answer greatly improves its verbal score effectiveness, even on simple fact-retrieval questions that normally require no reasoning. Furthermore, a separate reader model that sees only the chain can reconstruct very similar confidences, indicating the verbal score might be merely a statistic of the alternatives surfaced during reasoning. Our analysis concludes that reliable uncertainty estimation requires explicit exploration of the generative space, and self-reported confidence is trustworthy only after such exploration.
Related papers
- Verbalized Confidence Triggers Self-Verification: Emergent Behavior Without Explicit Reasoning Supervision [12.287123198288079]
Uncertainty calibration is essential for the safe deployment of large language models (LLMs)<n>We find that supervised fine-tuning with scalar confidence labels alone suffices to elicit self-verification behavior of language models.<n>We propose a simple rethinking method that boosts performance via test-time scaling based on calibrated uncertainty.
arXiv Detail & Related papers (2025-06-04T08:56:24Z) - Revisiting Overthinking in Long Chain-of-Thought from the Perspective of Self-Doubt [74.35891434097053]
Reasoning Large Language Models (RLLMs) have demonstrated impressive performance on complex tasks.<n>They often exhibit overthinking -- performing unnecessary reasoning steps even after arriving at the correct answer.<n>We present a quantitative analysis of overthinking from the perspective of self-doubt.<n>We introduce a simple and effective prompting method to reduce the model's over-reliance on input questions.
arXiv Detail & Related papers (2025-05-29T14:30:02Z) - ConCISE: Confidence-guided Compression in Step-by-step Efficient Reasoning [75.1101108949743]
Large Reasoning Models (LRMs) perform strongly in complex reasoning tasks via Chain-of-Thought (CoT) prompting.<n>LRMs often suffer from verbose outputs caused by redundant content, increasing computational overhead, and degrading user experience.<n>We propose ConCISE, a framework that simplifies reasoning chains by reinforcing the model's confidence during inference.
arXiv Detail & Related papers (2025-05-08T01:40:40Z) - Uncertainty Distillation: Teaching Language Models to Express Semantic Confidence [16.311538811237536]
Large language models (LLMs) are increasingly used for factual question-answering.<n>For these verbalized expressions of uncertainty to be meaningful, they should reflect the error rates at the expressed level of confidence.<n>We propose a simple procedure, uncertainty distillation, to teach an LLM to calibrated semantic confidences.
arXiv Detail & Related papers (2025-03-18T21:29:29Z) - On Verbalized Confidence Scores for LLMs [25.160810008907397]
Uncertainty quantification for large language models (LLMs) can establish more human trust into their responses.<n>This work focuses on asking the LLM itself to verbalize its uncertainty with a confidence score as part of its output tokens.<n>We assess the reliability of verbalized confidence scores with respect to different datasets, models, and prompt methods.
arXiv Detail & Related papers (2024-12-19T11:10:36Z) - DiverseAgentEntropy: Quantifying Black-Box LLM Uncertainty through Diverse Perspectives and Multi-Agent Interaction [53.803276766404494]
Existing methods, which gauge a model's uncertainty through evaluating self-consistency in responses to the original query, do not always capture true uncertainty.<n>We propose a novel method, DiverseAgentEntropy, for evaluating a model's uncertainty using multi-agent interaction.<n>Our method offers a more accurate prediction of the model's reliability and further detects hallucinations, outperforming other self-consistency-based methods.
arXiv Detail & Related papers (2024-12-12T18:52:40Z) - Bayesian meta learning for trustworthy uncertainty quantification [3.683202928838613]
We propose, Trust-Bayes, a novel optimization framework for Bayesian meta learning.
We characterize the lower bounds of the probabilities of the ground truth being captured by the specified intervals.
We analyze the sample complexity with respect to the feasible probability for trustworthy uncertainty quantification.
arXiv Detail & Related papers (2024-07-27T15:56:12Z) - To Believe or Not to Believe Your LLM [51.2579827761899]
We explore uncertainty quantification in large language models (LLMs)
We derive an information-theoretic metric that allows to reliably detect when only epistemic uncertainty is large.
We conduct a series of experiments which demonstrate the advantage of our formulation.
arXiv Detail & Related papers (2024-06-04T17:58:18Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
We introduce the concept of Confidence-Probability Alignment.
We probe the alignment between models' internal and expressed confidence.
Among the models analyzed, OpenAI's GPT-4 showed the strongest confidence-probability alignment.
arXiv Detail & Related papers (2024-05-25T15:42:04Z) - Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection [90.71323430635593]
We propose a novel self-detection paradigm that considers the comprehensive answer space beyond LLM-generated answers.
Building upon this paradigm, we introduce a two-step framework, which firstly instructs LLM to reflect and provide justifications for each candidate answer.
This framework can be seamlessly integrated with existing approaches for superior self-detection.
arXiv Detail & Related papers (2024-03-15T02:38:26Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
We investigate confidence estimation for end-to-end automatic speech recognition (ASR)
We provide an extensive benchmark of popular confidence methods on four well-known speech datasets.
Our results suggest a strong baseline can be obtained by scaling the logits by a learnt temperature.
arXiv Detail & Related papers (2021-01-14T09:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.