Information Structure in Mappings: An Approach to Learning, Representation, and Generalisation
- URL: http://arxiv.org/abs/2505.23960v1
- Date: Thu, 29 May 2025 19:27:50 GMT
- Title: Information Structure in Mappings: An Approach to Learning, Representation, and Generalisation
- Authors: Henry Conklin,
- Abstract summary: This thesis introduces quantitative methods for identifying systematic structure in a mapping between spaces.<n>I identify structural primitives present in a mapping, along with information theoretics of each.<n>I also introduce a novel, performant, approach to estimating the entropy of vector space, that allows this analysis to be applied to models ranging in size from 1 million to 12 billion parameters.
- Score: 3.8073142980733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the remarkable success of large large-scale neural networks, we still lack unified notation for thinking about and describing their representational spaces. We lack methods to reliably describe how their representations are structured, how that structure emerges over training, and what kinds of structures are desirable. This thesis introduces quantitative methods for identifying systematic structure in a mapping between spaces, and leverages them to understand how deep-learning models learn to represent information, what representational structures drive generalisation, and how design decisions condition the structures that emerge. To do this I identify structural primitives present in a mapping, along with information theoretic quantifications of each. These allow us to analyse learning, structure, and generalisation across multi-agent reinforcement learning models, sequence-to-sequence models trained on a single task, and Large Language Models. I also introduce a novel, performant, approach to estimating the entropy of vector space, that allows this analysis to be applied to models ranging in size from 1 million to 12 billion parameters. The experiments here work to shed light on how large-scale distributed models of cognition learn, while allowing us to draw parallels between those systems and their human analogs. They show how the structures of language and the constraints that give rise to them in many ways parallel the kinds of structures that drive performance of contemporary neural networks.
Related papers
- Cross-Model Semantics in Representation Learning [1.2064681974642195]
We show that structural regularities induce representational geometry that is more stable under architectural variation.<n>This suggests that certain forms of inductive bias not only support generalization within a model, but also improve the interoperability of learned features across models.
arXiv Detail & Related papers (2025-08-05T16:57:24Z) - Broad Spectrum Structure Discovery in Large-Scale Higher-Order Networks [1.7273380623090848]
We introduce a class of probabilistic models that efficiently represents and discovers a broad spectrum of mesoscale structure in large-scale hypergraphs.<n>By modeling observed node interactions through latent interactions among classes using low-rank representations, our approach tractably captures rich structural patterns.<n>Our model improves link prediction over state-of-the-art methods and discovers interpretable structures in diverse real-world systems.
arXiv Detail & Related papers (2025-05-27T20:34:58Z) - Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures [49.19753720526998]
We derive theoretical scaling laws for neural network performance on synthetic datasets.<n>We validate that convolutional networks, whose structure aligns with that of the generative process through locality and weight sharing, enjoy a faster scaling of performance.<n>This finding clarifies the architectural biases underlying neural scaling laws and highlights how representation learning is shaped by the interaction between model architecture and the statistical properties of data.
arXiv Detail & Related papers (2025-05-11T17:44:14Z) - On the Role of Information Structure in Reinforcement Learning for Partially-Observable Sequential Teams and Games [55.2480439325792]
In a sequential decision-making problem, the information structure is the description of how events in the system occurring at different points in time affect each other.
By contrast, real-world sequential decision-making problems typically involve a complex and time-varying interdependence of system variables.
We formalize a novel reinforcement learning model which explicitly represents the information structure.
arXiv Detail & Related papers (2024-03-01T21:28:19Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Discrete Latent Structure in Neural Networks [32.41642110537956]
This text explores three broad strategies for learning with discrete latent structure.
We show how most consist of the same small set of fundamental building blocks, but use them differently, leading to substantially different applicability and properties.
arXiv Detail & Related papers (2023-01-18T12:30:44Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z) - Learning Probabilistic Structural Representation for Biomedical Image
Segmentation [37.07198480786721]
We propose the first deep learning method to learn a structural representation.
We empirically demonstrate the strength of our method, i.e., generating true structures rather than pixel-maps with better topological integrity.
arXiv Detail & Related papers (2022-06-03T06:00:26Z) - Compositional Processing Emerges in Neural Networks Solving Math
Problems [100.80518350845668]
Recent progress in artificial neural networks has shown that when large models are trained on enough linguistic data, grammatical structure emerges in their representations.
We extend this work to the domain of mathematical reasoning, where it is possible to formulate precise hypotheses about how meanings should be composed.
Our work shows that neural networks are not only able to infer something about the structured relationships implicit in their training data, but can also deploy this knowledge to guide the composition of individual meanings into composite wholes.
arXiv Detail & Related papers (2021-05-19T07:24:42Z) - Modelling Compositionality and Structure Dependence in Natural Language [0.12183405753834563]
Drawing on linguistics and set theory, a formalisation of these ideas is presented in the first half of this thesis.
We see how cognitive systems that process language need to have certain functional constraints.
Using the advances of word embedding techniques, a model of relational learning is simulated.
arXiv Detail & Related papers (2020-11-22T17:28:50Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.