How far away are truly hyperparameter-free learning algorithms?
- URL: http://arxiv.org/abs/2505.24005v1
- Date: Thu, 29 May 2025 20:57:31 GMT
- Title: How far away are truly hyperparameter-free learning algorithms?
- Authors: Priya Kasimbeg, Vincent Roulet, Naman Agarwal, Sourabh Medapati, Fabian Pedregosa, Atish Agarwala, George E. Dahl,
- Abstract summary: We evaluate the potential of learning-rate-free methods as components of hyperparameter-free methods.<n>We find that literature-supplied default settings performed poorly on the benchmark.<n>The best AlgoPerf-calibrated learning-rate-free methods had much improved performance but still lagged slightly behind a similarly calibrated baseline in overall benchmark score.
- Score: 21.3925393750153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite major advances in methodology, hyperparameter tuning remains a crucial (and expensive) part of the development of machine learning systems. Even ignoring architectural choices, deep neural networks have a large number of optimization and regularization hyperparameters that need to be tuned carefully per workload in order to obtain the best results. In a perfect world, training algorithms would not require workload-specific hyperparameter tuning, but would instead have default settings that performed well across many workloads. Recently, there has been a growing literature on optimization methods which attempt to reduce the number of hyperparameters -- particularly the learning rate and its accompanying schedule. Given these developments, how far away is the dream of neural network training algorithms that completely obviate the need for painful tuning? In this paper, we evaluate the potential of learning-rate-free methods as components of hyperparameter-free methods. We freeze their (non-learning rate) hyperparameters to default values, and score their performance using the recently-proposed AlgoPerf: Training Algorithms benchmark. We found that literature-supplied default settings performed poorly on the benchmark, so we performed a search for hyperparameter configurations that performed well across all workloads simultaneously. The best AlgoPerf-calibrated learning-rate-free methods had much improved performance but still lagged slightly behind a similarly calibrated NadamW baseline in overall benchmark score. Our results suggest that there is still much room for improvement for learning-rate-free methods, and that testing against a strong, workload-agnostic baseline is important to improve hyperparameter reduction techniques.
Related papers
- Training neural networks faster with minimal tuning using pre-computed lists of hyperparameters for NAdamW [11.681640186200951]
We present a set of practical and performant hyper parameter lists for NAdamW.<n>Our best NAdamW hyper parameter list performs well on AlgoPerf held-out workloads not used to construct it.<n>It also outperforms basic learning rate/weight decay sweeps and an off-the-shelf Bayesian optimization tool when restricted to the same budget.
arXiv Detail & Related papers (2025-03-06T00:14:50Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
We introduce low-memory optimization with adaptive learning rate (AdaLomo) for large language models.
AdaLomo results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
arXiv Detail & Related papers (2023-10-16T09:04:28Z) - Online Hyperparameter Optimization for Class-Incremental Learning [99.70569355681174]
Class-incremental learning (CIL) aims to train a classification model while the number of classes increases phase-by-phase.
An inherent challenge of CIL is the stability-plasticity tradeoff, i.e., CIL models should keep stable to retain old knowledge and keep plastic to absorb new knowledge.
We propose an online learning method that can adaptively optimize the tradeoff without knowing the setting as a priori.
arXiv Detail & Related papers (2023-01-11T17:58:51Z) - Online Weighted Q-Ensembles for Reduced Hyperparameter Tuning in
Reinforcement Learning [0.38073142980732994]
Reinforcement learning is a promising paradigm for learning robot control, allowing complex control policies to be learned without requiring a dynamics model.
We propose employing an ensemble of multiple reinforcement learning agents, each with a different set of hyper parameters, along with a mechanism for choosing the best performing set.
Online weighted Q-Ensemble presented overall lower variance and superior results when compared with q-average ensembles.
arXiv Detail & Related papers (2022-09-29T19:57:43Z) - Scalable One-Pass Optimisation of High-Dimensional Weight-Update
Hyperparameters by Implicit Differentiation [0.0]
We develop an approximate hypergradient-based hyper parameter optimiser.
It requires only one training episode, with no restarts.
We also provide a motivating argument for convergence to the true hypergradient.
arXiv Detail & Related papers (2021-10-20T09:57:57Z) - Efficient Hyperparameter Optimization for Physics-based Character
Animation [1.2183405753834562]
We propose a novel Curriculum-based Multi-Fidelity Bayesian Optimization framework (CMFBO) for efficient hyperparameter optimization of DRL-based character control systems.
We show that our algorithm results in at least 5x efficiency gain comparing to author-released settings in DeepMimic.
arXiv Detail & Related papers (2021-04-26T06:46:36Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - How much progress have we made in neural network training? A New
Evaluation Protocol for Benchmarking Optimizers [86.36020260204302]
We propose a new benchmarking protocol to evaluate both end-to-end efficiency and data-addition training efficiency.
A human study is conducted to show that our evaluation protocol matches human tuning behavior better than the random search.
We then apply the proposed benchmarking framework to 7s and various tasks, including computer vision, natural language processing, reinforcement learning, and graph mining.
arXiv Detail & Related papers (2020-10-19T21:46:39Z) - Tasks, stability, architecture, and compute: Training more effective
learned optimizers, and using them to train themselves [53.37905268850274]
We introduce a new, hierarchical, neural network parameterized, hierarchical with access to additional features such as validation loss to enable automatic regularization.
Most learneds have been trained on only a single task, or a small number of tasks.
We train ours on thousands of tasks, making use of orders of magnitude more compute, resulting in generalizes that perform better to unseen tasks.
arXiv Detail & Related papers (2020-09-23T16:35:09Z) - A Gradient-based Bilevel Optimization Approach for Tuning
Hyperparameters in Machine Learning [0.0]
We propose a bilevel solution method for solving the hyperparameter optimization problem.
The proposed method is general and can be easily applied to any class of machine learning algorithms.
We discuss the theory behind the proposed algorithm and perform extensive computational study on two datasets.
arXiv Detail & Related papers (2020-07-21T18:15:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.