LlamaRL: A Distributed Asynchronous Reinforcement Learning Framework for Efficient Large-scale LLM Training
- URL: http://arxiv.org/abs/2505.24034v2
- Date: Mon, 02 Jun 2025 01:49:51 GMT
- Title: LlamaRL: A Distributed Asynchronous Reinforcement Learning Framework for Efficient Large-scale LLM Training
- Authors: Bo Wu, Sid Wang, Yunhao Tang, Jia Ding, Eryk Helenowski, Liang Tan, Tengyu Xu, Tushar Gowda, Zhengxing Chen, Chen Zhu, Xiaocheng Tang, Yundi Qian, Beibei Zhu, Rui Hou,
- Abstract summary: Reinforcement Learning (RL) has become the most effective post-training approach for improving the capabilities of Large Language Models (LLMs)<n>We present LlamaRL, a fully distributed, asynchronous RL framework optimized for efficient training of large-scale LLMs.
- Score: 32.575669924032276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) has become the most effective post-training approach for improving the capabilities of Large Language Models (LLMs). In practice, because of the high demands on latency and memory, it is particularly challenging to develop an efficient RL framework that reliably manages policy models with hundreds to thousands of billions of parameters. In this paper, we present LlamaRL, a fully distributed, asynchronous RL framework optimized for efficient training of large-scale LLMs with various model sizes (8B, 70B, and 405B parameters) on GPU clusters ranging from a handful to thousands of devices. LlamaRL introduces a streamlined, single-controller architecture built entirely on native PyTorch, enabling modularity, ease of use, and seamless scalability to thousands of GPUs. We also provide a theoretical analysis of LlamaRL's efficiency, including a formal proof that its asynchronous design leads to strict RL speed-up. Empirically during the Llama 3 post-training, by leveraging best practices such as colocated model offloading, asynchronous off-policy training, and distributed direct memory access for weight synchronization, LlamaRL achieves significant efficiency gains -- up to 10.7x speed-up compared to DeepSpeed-Chat-like systems on a 405B-parameter policy model. Furthermore, the efficiency advantage continues to grow with increasing model scale, demonstrating the framework's suitability for future large-scale RL training.
Related papers
- Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle [53.239242017802056]
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM)<n>However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing and Rollout Silencing.<n>We propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition.
arXiv Detail & Related papers (2025-08-07T17:53:47Z) - Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-lite is a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL)<n>Our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks.
arXiv Detail & Related papers (2025-06-17T17:12:34Z) - AReaL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning [26.103555014247117]
Reinforcement learning (RL) has become a dominant paradigm for training large language models (LLMs)<n>We present AReaL, a fully asynchronous RL system that completely decouples generation from training.
arXiv Detail & Related papers (2025-05-30T07:18:25Z) - Scaling Offline RL via Efficient and Expressive Shortcut Models [13.050231036248338]
offline reinforcement learning (RL) remains challenging due to the iterative nature of their noise sampling processes.<n>We introduce Scalable Offline Reinforcement Learning (SORL), a new offline RL algorithm that leverages shortcut models to scale both training and inference.<n>We demonstrate that SORL achieves strong performance across a range of offline RL tasks and exhibits positive scaling behavior with increased test-time compute.
arXiv Detail & Related papers (2025-05-28T20:59:22Z) - StreamRL: Scalable, Heterogeneous, and Elastic RL for LLMs with Disaggregated Stream Generation [55.75008325187133]
Reinforcement learning (RL) has become the core post-training technique for large language models (LLMs)<n>StreamRL is designed with disaggregation from first principles to address two types of performance bottlenecks.<n> Experiments show that StreamRL improves throughput by up to 2.66x compared to existing state-of-the-art systems.
arXiv Detail & Related papers (2025-04-22T14:19:06Z) - Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models.<n>We present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch.
arXiv Detail & Related papers (2025-04-10T17:15:53Z) - Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining [49.730897226510095]
We introduce JOWA: Jointly-Reinforced World-Action model, an offline model-based RL agent pretrained on Atari games with 6 billion tokens data.<n>Our largest agent, with 150 million parameters, 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange.
arXiv Detail & Related papers (2024-10-01T10:25:03Z) - ReaL: Efficient RLHF Training of Large Language Models with Parameter Reallocation [12.321332446941378]
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for empowering large language model (LLM) applications.<n>We introduce ReaL, a pioneering system for efficient RLHF training.<n>We evaluate ReaL on the LLaMA models with up to 70 billion parameters and 128 GPUs.
arXiv Detail & Related papers (2024-06-20T08:04:07Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - Spreeze: High-Throughput Parallel Reinforcement Learning Framework [19.3019166138232]
Spreeze is a lightweight parallel framework for reinforcement learning.
It efficiently utilizes a single desktop hardware resource to approach the throughput limit.
It can achieve up to 15,000Hz experience sampling and 370,000Hz network update frame rate.
arXiv Detail & Related papers (2023-12-11T05:25:01Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
We present a novel abstraction on the dataflows of RL training, which unifies diverse RL training applications into a general framework.
We develop a scalable, efficient, and distributed RL system called ReaLly scalableRL, which allows efficient and massively parallelized training.
SRL is the first in the academic community to perform RL experiments at a large scale with over 15k CPU cores.
arXiv Detail & Related papers (2023-06-29T05:16:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.